Stuart White created SPARK-29101: ------------------------------------ Summary: CSV datasource returns incorrect .count() from file with malformed records Key: SPARK-29101 URL: https://issues.apache.org/jira/browse/SPARK-29101 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 2.4.4 Reporter: Stuart White
Spark 2.4 introduced a change to the way csv files are read. See [Upgrading From Spark SQL 2.3 to 2.4|https://spark.apache.org/docs/2.4.0/sql-migration-guide-upgrade.html#upgrading-from-spark-sql-23-to-24] for more details. In that document, it states: _To restore the previous behavior, set spark.sql.csv.parser.columnPruning.enabled to false._ I am configuring Spark 2.4.4 as such, yet I'm still getting results inconsistent with pre-2.4. For example: Consider this file (fruit.csv). Notice it contains a header record, 3 valid records, and one malformed record. {noformat} fruit,color,price,quantity apple,red,1,3 banana,yellow,2,4 orange,orange,3,5 xxx {noformat} With Spark 2.1.1, if I call .count() on a DataFrame created from this file (using option DROPMALFORMED), "3" is returned. {noformat} (using Spark 2.1.1) scala> spark.read.option("header", "true").option("mode", "DROPMALFORMED").csv("fruit.csv").count 19/09/16 14:28:01 WARN CSVRelation: Dropping malformed line: xxx res1: Long = 3 {noformat} With Spark 2.4.4, I set the "spark.sql.csv.parser.columnPruning.enabled" option to false to restore the pre-2.4 behavior for handling malformed records, then call .count() and "4" is returned. {noformat} (using spark 2.4.4) scala> spark.conf.set("spark.sql.csv.parser.columnPruning.enabled", false) scala> spark.read.option("header", "true").option("mode", "DROPMALFORMED").csv("fruit.csv").count res1: Long = 4 {noformat} So, using the *spark.sql.csv.parser.columnPruning.enabled* option did not actually restore previous behavior. How can I, using Spark 2.4+, get a count of the records in a .csv which excludes malformed records? -- This message was sent by Atlassian Jira (v8.3.2#803003) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org