[ 
https://issues.apache.org/jira/browse/SPARK-29321?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Jungtaek Lim updated SPARK-29321:
---------------------------------
    Attachment: Screen Shot 2019-10-20 at 10.55.03 PM.png

> Possible memory leak in Spark
> -----------------------------
>
>                 Key: SPARK-29321
>                 URL: https://issues.apache.org/jira/browse/SPARK-29321
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>    Affects Versions: 2.3.3
>            Reporter: George Papa
>            Priority: Major
>         Attachments: Screen Shot 2019-10-20 at 10.55.03 PM.png
>
>
> This issue is a clone of the (SPARK-29055). After Spark version 2.3.3, 
> I{color:#172b4d} observe that the JVM memory is increasing slightly overtime. 
> This behavior also affects the application performance because when I run my 
> real application in testing environment, after a while the persisted 
> dataframes stop fitting into the executors memory and I have spill to 
> disk.{color}
> {color:#172b4d}JVM memory usage (based on htop command){color}
> ||Time||RES||SHR||MEM%||
> |1min|{color:#de350b}1349{color}|32724|1.5|
> |3min|{color:#de350b}1936{color}|32724|2.2|
> |5min|{color:#de350b}2506{color}|32724|2.6|
> |7min|{color:#de350b}2564{color}|32724|2.7|
> |9min|{color:#de350b}2584{color}|32724|2.7|
> |11min|{color:#de350b}2585{color}|32724|2.7|
> |13min|{color:#de350b}2592{color}|32724|2.7|
> |15min|{color:#de350b}2591{color}|32724|2.7|
> |17min|{color:#de350b}2591{color}|32724|2.7|
> |30min|{color:#de350b}2600{color}|32724|2.7|
> |1h|{color:#de350b}2618{color}|32724|2.7|
>  
> *HOW TO REPRODUCE THIS BEHAVIOR:*
>  Reproduce the above behavior, by running the snippet code (I prefer to run 
> without any sleeping delay) and track the JVM memory with top or htop command.
> {code:java}
> import time
> import os
> from pyspark.sql import SparkSession
> from pyspark.sql import functions as F
> from pyspark.sql import types as T
> target_dir = "..."
> spark=SparkSession.builder.appName("DataframeCount").getOrCreate()
> while True:
>     for f in os.listdir(target_dir):
>         df = spark.read.load(target_dir + f, format="csv")
>         print("Number of records: {0}".format(df.count()))
>         time.sleep(15){code}
>  
> *TESTED CASES WITH THE SAME BEHAVIOUR:*
>  * I tested with default settings (spark-defaults.conf)
>  * Add spark.cleaner.periodicGC.interval 1min (or less)
>  * {{Turn spark.cleaner.referenceTracking.blocking}}=false
>  * Run the application in cluster mode
>  * Increase/decrease the resources of the executors and driver
>  * I tested with extraJavaOptions in driver and executor -XX:+UseG1GC 
> -XX:InitiatingHeapOccupancyPercent=35 -XX:ConcGCThreads=12
>  * It is also tested with the Spark 2.4.4 (latest) and had the same behavior.
>   
> *DEPENDENCIES*
>  * Operation system: Ubuntu 16.04.3 LTS
>  * Java: jdk1.8.0_131 (tested also with jdk1.8.0_221)
>  * Python: Python 2.7.12



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to