[ 
https://issues.apache.org/jira/browse/SPARK-30006?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Hasil Sharma updated SPARK-30006:
---------------------------------
    Description: 
printSchema doesn't give a consistent output in following example.

 
{code:python}
from pyspark.sql import SparkSession
from pyspark.sql import Row

spark = SparkSession.builder.appName("new-session").getOrCreate()
 l = [('Ankit',25),('Jalfaizy',22),('saurabh',20),('Bala',26)]
 rdd = spark.sparkContext.parallelize(l)
 people_1 = rdd.map(lambda x: Row(name=x[0], age=int(x[1])))

df1 = spark.createDataFrame(people_1)

print(df1.printSchema())

df2 = df1.select("name", "age")

print(df2.printSchema())
{code}
 

first print outputs
{noformat}
root
|– age: long (nullable = true)
|– name: string (nullable = true)
{noformat}
 

second print outputs
{noformat}
root
|– name: string (nullable = true)
|– age: long (nullable = true)
{noformat}
Expectation: The output should be same because the column names are same.

  was:
printSchema doesn't give a consistent output in following example.

 

```python

from pyspark.sql import SparkSession
 from pyspark.sql import Row

spark = SparkSession.builder.appName("new-session").getOrCreate()
 l = [('Ankit',25),('Jalfaizy',22),('saurabh',20),('Bala',26)]
 rdd = spark.sparkContext.parallelize(l)
 people_1 = rdd.map(lambda x: Row(name=x[0], age=int(x[1])))

df1 = spark.createDataFrame(people_1)

print(df1.printSchema())

df2 = df1.select("name", "age")

print(df2.printSchema())

```

 

first print outputs

```root
|– age: long (nullable = true)|
|– name: string (nullable = true)|```

 

second print outputs

```root
|– name: string (nullable = true)|
|– age: long (nullable = true)|```

Expectation: The output should be same because the column names are same.


> printSchema indeterministic output
> ----------------------------------
>
>                 Key: SPARK-30006
>                 URL: https://issues.apache.org/jira/browse/SPARK-30006
>             Project: Spark
>          Issue Type: Improvement
>          Components: SQL
>    Affects Versions: 2.4.4
>            Reporter: Hasil Sharma
>            Priority: Minor
>
> printSchema doesn't give a consistent output in following example.
>  
> {code:python}
> from pyspark.sql import SparkSession
> from pyspark.sql import Row
> spark = SparkSession.builder.appName("new-session").getOrCreate()
>  l = [('Ankit',25),('Jalfaizy',22),('saurabh',20),('Bala',26)]
>  rdd = spark.sparkContext.parallelize(l)
>  people_1 = rdd.map(lambda x: Row(name=x[0], age=int(x[1])))
> df1 = spark.createDataFrame(people_1)
> print(df1.printSchema())
> df2 = df1.select("name", "age")
> print(df2.printSchema())
> {code}
>  
> first print outputs
> {noformat}
> root
> |– age: long (nullable = true)
> |– name: string (nullable = true)
> {noformat}
>  
> second print outputs
> {noformat}
> root
> |– name: string (nullable = true)
> |– age: long (nullable = true)
> {noformat}
> Expectation: The output should be same because the column names are same.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to