[ https://issues.apache.org/jira/browse/SPARK-18105?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16981442#comment-16981442 ]
Ivan Dyptan commented on SPARK-18105: ------------------------------------- You can recreate the error consistently by forcing disk spill on shuffle: # Run spark-shell with minimum memory `./bin/spark-shell --master yarn --executor-memory 1g --num-executors 1` # Create two large tables, at least ~10M records # Join them together {color:#172b4d}{{val people0 = spark.read.{color:#172b4d}orc{color}({color:#36b37e}"/tmp/people/people0.orc"{color}).{color:#172b4d}select{color}({color:#36b37e}"ID"{color}, {color:#36b37e}"{color}{color:#36b37e}ln"{color}).{color:#172b4d}sortWithinPartitions{color}({color:#36b37e}"ID"{color})val people1 = spark.read.{color:#172b4d}orc{color}({color:#36b37e}"/tmp/people/people1.orc"{color}).{color:#172b4d}select{color}({color:#36b37e}"ID"{color}, {color:#36b37e}"fn"{color}).{color:#172b4d}sortWithinPartitions{color}({color:#36b37e}"ID"{color})people0.{color:#172b4d}join{color}(people1, {color:#6554c0}Seq{color}({color:#36b37e}"ID"{color})).write.{color:#172b4d}parquet{color}({color:#36b37e}"/tmp/people/joined"{color})}}{color} Tested with Spark 2.4.0 > LZ4 failed to decompress a stream of shuffled data > -------------------------------------------------- > > Key: SPARK-18105 > URL: https://issues.apache.org/jira/browse/SPARK-18105 > Project: Spark > Issue Type: Bug > Components: Spark Core > Reporter: Davies Liu > Assignee: Davies Liu > Priority: Major > > When lz4 is used to compress the shuffle files, it may fail to decompress it > as "stream is corrupt" > {code} > Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: > Task 92 in stage 5.0 failed 4 times, most recent failure: Lost task 92.3 in > stage 5.0 (TID 16616, 10.0.27.18): java.io.IOException: Stream is corrupted > at > org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:220) > at > org.apache.spark.io.LZ4BlockInputStream.available(LZ4BlockInputStream.java:109) > at java.io.BufferedInputStream.read(BufferedInputStream.java:353) > at java.io.DataInputStream.read(DataInputStream.java:149) > at com.google.common.io.ByteStreams.read(ByteStreams.java:828) > at com.google.common.io.ByteStreams.readFully(ByteStreams.java:695) > at > org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:127) > at > org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:110) > at scala.collection.Iterator$$anon$13.next(Iterator.scala:372) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at > org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:30) > at > org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.sort_addToSorter$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) > at > org.apache.spark.sql.execution.datasources.DynamicPartitionWriterContainer.writeRows(WriterContainer.scala:397) > at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143) > at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) > at org.apache.spark.scheduler.Task.run(Task.scala:86) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > {code} > https://github.com/jpountz/lz4-java/issues/89 -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org