sam created SPARK-30101: --------------------------- Summary: Dataset distinct does not respect spark.default.parallelism Key: SPARK-30101 URL: https://issues.apache.org/jira/browse/SPARK-30101 Project: Spark Issue Type: Bug Components: Spark Core Affects Versions: 2.4.4, 2.4.0 Reporter: sam
I'm creating a `SparkSession` like this: ``` SparkSession .builder().appName("foo").master("local") .config("spark.default.parallelism", 2).getOrCreate() ``` when I run ``` ((1 to 10) ++ (1 to 10)).toDS().distinct().count() ``` I get 200 partitions ``` 19/12/02 10:29:34 INFO TaskSchedulerImpl: Adding task set 1.0 with 200 tasks ... 19/12/02 10:29:34 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 46 ms on localhost (executor driver) (1/200) ``` It is the `distinct` that is broken since `ds.rdd.getNumPartitions` gives `2`, while `ds.distinct().rdd.getNumPartitions` gives `200`. `ds.rdd.groupBy(identity).map(_._2.head)` and `ds.rdd.distinct()` work correctly. Finally I notice that the good old `RDD` interface has a `distinct` that accepts `numPartitions` partitions, while `Dataset` does not. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org