[ https://issues.apache.org/jira/browse/SPARK-30101?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
sam reopened SPARK-30101: ------------------------- What is expected, is what is documented. > Dataset distinct does not respect spark.default.parallelism > ----------------------------------------------------------- > > Key: SPARK-30101 > URL: https://issues.apache.org/jira/browse/SPARK-30101 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 2.4.0, 2.4.4 > Reporter: sam > Priority: Major > > I'm creating a `SparkSession` like this: > ``` > SparkSession > .builder().appName("foo").master("local") > .config("spark.default.parallelism", 2).getOrCreate() > ``` > when I run > ``` > ((1 to 10) ++ (1 to 10)).toDS().distinct().count() > ``` > I get 200 partitions > ``` > 19/12/02 10:29:34 INFO TaskSchedulerImpl: Adding task set 1.0 with 200 tasks > ... > 19/12/02 10:29:34 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) > in 46 ms on localhost (executor driver) (1/200) > ``` > It is the `distinct` that is broken since `ds.rdd.getNumPartitions` gives > `2`, while `ds.distinct().rdd.getNumPartitions` gives `200`. > `ds.rdd.groupBy(identity).map(_._2.head)` and `ds.rdd.distinct()` work > correctly. > Finally I notice that the good old `RDD` interface has a `distinct` that > accepts `numPartitions` partitions, while `Dataset` does not. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org