[ 
https://issues.apache.org/jira/browse/SPARK-30522?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

phanikumar updated SPARK-30522:
-------------------------------
    Description: 
I have written a spark streaming consumer to consume the data from Kafka. I 
found a weird behavior in my logs. The Kafka topic has 3 partitions and for 
each partition, an executor is launched by Spark Streaming job.I have written a 
spark streaming consumer to consume the data from Kafka. I found a weird 
behavior in my logs. The Kafka topic has 3 partitions and for each partition, 
an executor is launched by Spark Streaming job.
 The first executor id always takes the parameters I have provided while 
creating the streaming context but the executor with ID 2 and 3 always override 
the kafka parameters.
    
{code:java}
20/01/14 12:15:05 WARN StreamingContext: Dynamic Allocation is enabled for this 
application. Enabling Dynamic allocation for Spark Streaming applications can 
cause data loss if Write Ahead Log is not enabled for non-replayable sour    
ces like Flume. See the programming guide for details on how to enable the 
Write Ahead Log.    
20/01/14 12:15:05 INFO FileBasedWriteAheadLog_ReceivedBlockTracker: Recovered 2 
write ahead log files from hdfs://tlabnamenode/checkpoint/receivedBlockMetadata 
   
20/01/14 12:15:05 INFO DirectKafkaInputDStream: Slide time = 5000 ms    
20/01/14 12:15:05 INFO DirectKafkaInputDStream: Storage level = Serialized 1x 
Replicated    20/01/14 12:15:05 INFO DirectKafkaInputDStream: Checkpoint 
interval = null   
 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Remember interval = 5000 ms    
20/01/14 12:15:05 INFO DirectKafkaInputDStream: Initialized and validated 
org.apache.spark.streaming.kafka010.DirectKafkaInputDStream@12665f3f    
20/01/14 12:15:05 INFO ForEachDStream: Slide time = 5000 ms    
20/01/14 12:15:05 INFO ForEachDStream: Storage level = Serialized 1x Replicated 
   20/01/14 12:15:05 INFO ForEachDStream: Checkpoint interval = null    
20/01/14 12:15:05 INFO ForEachDStream: Remember interval = 5000 ms    
20/01/14 12:15:05 INFO ForEachDStream: Initialized and validated 
org.apache.spark.streaming.dstream.ForEachDStream@a4d83ac    
20/01/14 12:15:05 INFO ConsumerConfig: ConsumerConfig values:             
auto.commit.interval.ms = 5000            
auto.offset.reset = latest            
bootstrap.servers = [1,2,3]            
check.crcs = true            
client.id = client-0            
connections.max.idle.ms = 540000            
default.api.timeout.ms = 60000            
enable.auto.commit = false            
exclude.internal.topics = true            
fetch.max.bytes = 52428800            
fetch.max.wait.ms = 500            
fetch.min.bytes = 1            
group.id = telemetry-streaming-service            
heartbeat.interval.ms = 3000            
interceptor.classes = []            
internal.leave.group.on.close = true            
isolation.level = read_uncommitted            
key.deserializer = class 
org.apache.kafka.common.serialization.StringDeserializer
 
{code}
Here is the log for other executors.
    
{code:java}
 20/01/14 12:15:04 INFO Executor: Starting executor ID 2 on host 1    
20/01/14 12:15:04 INFO Utils: Successfully started service 
'org.apache.spark.network.netty.NettyBlockTransferService' on port 40324.    
20/01/14 12:15:04 INFO NettyBlockTransferService: Server created on 1    
20/01/14 12:15:04 INFO BlockManager: Using 
org.apache.spark.storage.RandomBlockReplicationPolicy for block replication 
policy    20/01/14 12:15:04 INFO BlockManagerMaster: Registering BlockManager 
BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
20/01/14 12:15:04 INFO BlockManagerMaster: Registered BlockManager 
BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
20/01/14 12:15:04 INFO BlockManager: external shuffle service port = 7447    
20/01/14 12:15:04 INFO BlockManager: Registering executor with local external 
shuffle service.    
20/01/14 12:15:04 INFO TransportClientFactory: Successfully created connection 
to matrix-hwork-data-05/10.83.34.25:7447 after 1 ms (0 ms spent in bootstraps)  
  
20/01/14 12:15:04 INFO BlockManager: Initialized BlockManager: 
BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
20/01/14 12:15:19 INFO CoarseGrainedExecutorBackend: Got assigned task 1    
20/01/14 12:15:19 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)    
20/01/14 12:15:19 INFO TorrentBroadcast: Started reading broadcast variable 0   
 
20/01/14 12:15:19 INFO TransportClientFactory: Successfully created connection 
to matrix-hwork-data-05/10.83.34.25:38759 after 2 ms (0 ms spent in bootstraps) 
   
20/01/14 12:15:20 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in 
memory (estimated size 8.1 KB, free 6.2 GB)    
20/01/14 12:15:20 INFO TorrentBroadcast: Reading broadcast variable 0 took 163 
ms    20/01/14 12:15:20 INFO MemoryStore: Block broadcast_0 stored as values in 
memory (estimated size 17.9 KB, free 6.2 GB)    
20/01/14 12:15:20 INFO KafkaRDD: Computing topic telemetry, partition 1 offsets 
237352170 -> 237352311    20/01/14 12:15:20 INFO CachedKafkaConsumer: 
Initializing cache 16 64 0.75    20/01/14 12:15:20 INFO CachedKafkaConsumer: 
Cache miss for CacheKey(spark-executor-telemetry-streaming-service,telemetry,1) 
   
20/01/14 12:15:20 INFO ConsumerConfig: ConsumerConfig values:             
auto.commit.interval.ms = 5000            
auto.offset.reset = none            
bootstrap.servers = [1,2,3]            
check.crcs = true            
client.id = client-0            
connections.max.idle.ms = 540000            
default.api.timeout.ms = 60000            
enable.auto.commit = false            
exclude.internal.topics = true            
fetch.max.bytes = 52428800            
fetch.max.wait.ms = 500

{code}
 

If we closely observer in the first executor the **auto.offset.reset is 
latest** but for the other executors the **auto.offset.reset = none**

 

Here is how I am creating the streaming context
  
{code:java}
// code placeholderpublic void init() throws Exception {

        final String BOOTSTRAP_SERVERS = PropertyFileReader.getInstance()
                .getProperty("spark.streaming.kafka.broker.list");
        final String DYNAMIC_ALLOCATION_ENABLED = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.dynamicAllocation.enabled");
        final String DYNAMIC_ALLOCATION_SCALING_INTERVAL = 
PropertyFileReader.getInstance()
                
.getProperty("spark.streaming.dynamicAllocation.scalingInterval");
        final String DYNAMIC_ALLOCATION_MIN_EXECUTORS = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.dynamicAllocation.minExecutors");
        final String DYNAMIC_ALLOCATION_MAX_EXECUTORS = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.dynamicAllocation.maxExecutors");
        final String DYNAMIC_ALLOCATION_EXECUTOR_IDLE_TIMEOUT = 
PropertyFileReader.getInstance()
                
.getProperty("spark.streaming.dynamicAllocation.executorIdleTimeout");
        final String DYNAMIC_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT = 
PropertyFileReader.getInstance()
                
.getProperty("spark.streaming.dynamicAllocation.cachedExecutorIdleTimeout");
        final String SPARK_SHUFFLE_SERVICE_ENABLED = 
PropertyFileReader.getInstance()
                .getProperty("spark.shuffle.service.enabled");
        final String SPARK_LOCALITY_WAIT = 
PropertyFileReader.getInstance().getProperty("spark.locality.wait");
        final String SPARK_KAFKA_CONSUMER_POLL_INTERVAL = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.kafka.consumer.poll.ms");
        final String SPARK_KAFKA_MAX_RATE_PER_PARTITION = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.kafka.maxRatePerPartition");
        final String SPARK_BATCH_DURATION_IN_SECONDS = 
PropertyFileReader.getInstance()
                .getProperty("spark.batch.duration.in.seconds");
        final String KAFKA_TOPIC = 
PropertyFileReader.getInstance().getProperty("spark.streaming.kafka.topic");

        LOGGER.debug("connecting to brokers ::" + BOOTSTRAP_SERVERS);
        LOGGER.debug("bootstrapping properties to create consumer");

        kafkaParams = new HashMap<>();
        kafkaParams.put("bootstrap.servers", BOOTSTRAP_SERVERS);
        kafkaParams.put("key.deserializer", StringDeserializer.class);
        kafkaParams.put("value.deserializer", StringDeserializer.class);
        kafkaParams.put("group.id", "telemetry-streaming-service");
        kafkaParams.put("auto.offset.reset", "latest");
        kafkaParams.put("enable.auto.commit", false);
        kafkaParams.put("client.id", "client-0");
        // Below property should be enabled in properties and changed based on
        // performance testing
        kafkaParams.put("max.poll.records",
                
PropertyFileReader.getInstance().getProperty("spark.streaming.kafka.max.poll.records"));

        LOGGER.info("registering as a consumer with the topic :: " + 
KAFKA_TOPIC);
        topics = Arrays.asList(KAFKA_TOPIC);
        sparkConf = new SparkConf()
//                
.setMaster(PropertyFileReader.getInstance().getProperty("spark.master.url"))
                
.setAppName(PropertyFileReader.getInstance().getProperty("spark.application.name"))
                .set("spark.streaming.dynamicAllocation.enabled", 
DYNAMIC_ALLOCATION_ENABLED)
                .set("spark.streaming.dynamicAllocation.scalingInterval", 
DYNAMIC_ALLOCATION_SCALING_INTERVAL)
                .set("spark.streaming.dynamicAllocation.minExecutors", 
DYNAMIC_ALLOCATION_MIN_EXECUTORS)
                .set("spark.streaming.dynamicAllocation.maxExecutors", 
DYNAMIC_ALLOCATION_MAX_EXECUTORS)
                .set("spark.streaming.dynamicAllocation.executorIdleTimeout", 
DYNAMIC_ALLOCATION_EXECUTOR_IDLE_TIMEOUT)
                
.set("spark.streaming.dynamicAllocation.cachedExecutorIdleTimeout",
                        DYNAMIC_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT)
                .set("spark.shuffle.service.enabled", 
SPARK_SHUFFLE_SERVICE_ENABLED)
                .set("spark.locality.wait", SPARK_LOCALITY_WAIT)
                .set("spark.streaming.kafka.consumer.poll.ms", 
SPARK_KAFKA_CONSUMER_POLL_INTERVAL)
                .set("spark.streaming.kafka.maxRatePerPartition", 
SPARK_KAFKA_MAX_RATE_PER_PARTITION);

        LOGGER.debug("creating streaming context with minutes batch interval  
::: " + SPARK_BATCH_DURATION_IN_SECONDS);
        streamingContext = new JavaStreamingContext(sparkConf,
                
Durations.seconds(Integer.parseInt(SPARK_BATCH_DURATION_IN_SECONDS)));

        /*
         * todo: add checkpointing to the streaming context to recover from 
driver
         * failures and also for offset management
         */
        LOGGER.info("checkpointing the streaming transactions at hdfs path :: 
/checkpoint");
        streamingContext.checkpoint("/checkpoint");
        streamingContext.addStreamingListener(new DataProcessingListener());
}
{code}
 

 
{code:java}
public void execute() throws InterruptedException {       
JavaInputDStream<ConsumerRecord<String, String>> telemetryStream = 
KafkaUtils.createDirectStream( streamingContext, 
LocationStrategies.PreferConsistent(), ConsumerStrategies.Subscribe(topics, 
kafkaParams)); 
telemetryStream.foreachRDD(rawRDD -> { 
if (!rawRDD.isEmpty()) { 
OffsetRange[] offsetRanges = ((HasOffsetRanges) rawRDD.rdd()).offsetRanges(); 
SparkSession spark = 
JavaSparkSessionSingleton.getInstance(rawRDD.context().getConf()); 
JavaPairRDD<String, String> flattenedRawRDD = rawRDD.mapToPair(record -> 
{ 
ObjectMapper om = new ObjectMapper(); 
JsonNode root = om.readTree(record.value()); 
Map<String, JsonNode> flattenedMap = new FlatJsonGenerator(root).flatten(); 
JsonNode flattenedRootNode = om.convertValue(flattenedMap, JsonNode.class); 
return new Tuple2<String, 
String>(flattenedRootNode.get("/name").asText(),flattenedRootNode.toString()); 
}); 
 
Dataset<Row> rawFlattenedDataRDD = spark.createDataset(flattenedRawRDD.rdd(), 
Encoders.tuple(Encoders.STRING(), Encoders.STRING())).toDF("sensor_path", 
"sensor_data"); 
Dataset<Row> groupedDS = 
rawFlattenedDataRDD.groupBy(col("sensor_path")).agg(collect_list(col("sensor_data").as("sensor_data")));
 
Dataset<Row> lldpGroupedDS = groupedDS.filter((FilterFunction<Row>) r -> 
r.getString(0).equals("Cisco-IOS-XR-ethernet-lldp-oper:lldp/nodes/node/neighbors/devices/device"));
 
HashMap<Object, Object> params = new HashMap<>(); 
params.put(DPConstants.OTSDB_CONFIG_F_PATH, 
ExternalizedConfigsReader.getPropertyValueFromCache("/opentsdb.config.file.path"));
 params.put(DPConstants.OTSDB_CLIENT_TYPE, 
ExternalizedConfigsReader.getPropertyValueFromCache("/opentsdb.client.type")); 
try { 
Pipeline lldpPipeline = 
PipelineFactory.getPipeline(PipelineType.LLDPTELEMETRY); 
lldpPipeline.process(lldpGroupedDS, null); Pipeline pipeline = 
PipelineFactory.getPipeline(PipelineType.TELEMETRY); 
pipeline.process(groupedDS, params); } 
catch (Throwable t) { 
t.printStackTrace(); 
} 
((CanCommitOffsets) telemetryStream.inputDStream()).commitAsync(offsetRanges); 
} }); 
streamingContext.start(); 
streamingContext.awaitTermination();
}
{code}
 

  was:
I have written a spark streaming consumer to consume the data from Kafka. I 
found a weird behavior in my logs. The Kafka topic has 3 partitions and for 
each partition, an executor is launched by Spark Streaming job.I have written a 
spark streaming consumer to consume the data from Kafka. I found a weird 
behavior in my logs. The Kafka topic has 3 partitions and for each partition, 
an executor is launched by Spark Streaming job.
 The first executor id always takes the parameters I have provided while 
creating the streaming context but the executor with ID 2 and 3 always override 
the kafka parameters.
    
{code:java}
20/01/14 12:15:05 WARN StreamingContext: Dynamic Allocation is enabled for this 
application. Enabling Dynamic allocation for Spark Streaming applications can 
cause data loss if Write Ahead Log is not enabled for non-replayable sour    
ces like Flume. See the programming guide for details on how to enable the 
Write Ahead Log.    
20/01/14 12:15:05 INFO FileBasedWriteAheadLog_ReceivedBlockTracker: Recovered 2 
write ahead log files from hdfs://tlabnamenode/checkpoint/receivedBlockMetadata 
   
20/01/14 12:15:05 INFO DirectKafkaInputDStream: Slide time = 5000 ms    
20/01/14 12:15:05 INFO DirectKafkaInputDStream: Storage level = Serialized 1x 
Replicated    20/01/14 12:15:05 INFO DirectKafkaInputDStream: Checkpoint 
interval = null   
 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Remember interval = 5000 ms    
20/01/14 12:15:05 INFO DirectKafkaInputDStream: Initialized and validated 
org.apache.spark.streaming.kafka010.DirectKafkaInputDStream@12665f3f    
20/01/14 12:15:05 INFO ForEachDStream: Slide time = 5000 ms    
20/01/14 12:15:05 INFO ForEachDStream: Storage level = Serialized 1x Replicated 
   20/01/14 12:15:05 INFO ForEachDStream: Checkpoint interval = null    
20/01/14 12:15:05 INFO ForEachDStream: Remember interval = 5000 ms    
20/01/14 12:15:05 INFO ForEachDStream: Initialized and validated 
org.apache.spark.streaming.dstream.ForEachDStream@a4d83ac    
20/01/14 12:15:05 INFO ConsumerConfig: ConsumerConfig values:             
auto.commit.interval.ms = 5000            
auto.offset.reset = latest            
bootstrap.servers = [1,2,3]            
check.crcs = true            
client.id = client-0            
connections.max.idle.ms = 540000            
default.api.timeout.ms = 60000            
enable.auto.commit = false            
exclude.internal.topics = true            
fetch.max.bytes = 52428800            
fetch.max.wait.ms = 500            
fetch.min.bytes = 1            
group.id = telemetry-streaming-service            
heartbeat.interval.ms = 3000            
interceptor.classes = []            
internal.leave.group.on.close = true            
isolation.level = read_uncommitted            
key.deserializer = class 
org.apache.kafka.common.serialization.StringDeserializer
 
{code}
Here is the log for other executors.
    
{code:java}
 20/01/14 12:15:04 INFO Executor: Starting executor ID 2 on host 1    
20/01/14 12:15:04 INFO Utils: Successfully started service 
'org.apache.spark.network.netty.NettyBlockTransferService' on port 40324.    
20/01/14 12:15:04 INFO NettyBlockTransferService: Server created on 1    
20/01/14 12:15:04 INFO BlockManager: Using 
org.apache.spark.storage.RandomBlockReplicationPolicy for block replication 
policy    20/01/14 12:15:04 INFO BlockManagerMaster: Registering BlockManager 
BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
20/01/14 12:15:04 INFO BlockManagerMaster: Registered BlockManager 
BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
20/01/14 12:15:04 INFO BlockManager: external shuffle service port = 7447    
20/01/14 12:15:04 INFO BlockManager: Registering executor with local external 
shuffle service.    
20/01/14 12:15:04 INFO TransportClientFactory: Successfully created connection 
to matrix-hwork-data-05/10.83.34.25:7447 after 1 ms (0 ms spent in bootstraps)  
  
20/01/14 12:15:04 INFO BlockManager: Initialized BlockManager: 
BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
20/01/14 12:15:19 INFO CoarseGrainedExecutorBackend: Got assigned task 1    
20/01/14 12:15:19 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)    
20/01/14 12:15:19 INFO TorrentBroadcast: Started reading broadcast variable 0   
 
20/01/14 12:15:19 INFO TransportClientFactory: Successfully created connection 
to matrix-hwork-data-05/10.83.34.25:38759 after 2 ms (0 ms spent in bootstraps) 
   
20/01/14 12:15:20 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in 
memory (estimated size 8.1 KB, free 6.2 GB)    
20/01/14 12:15:20 INFO TorrentBroadcast: Reading broadcast variable 0 took 163 
ms    20/01/14 12:15:20 INFO MemoryStore: Block broadcast_0 stored as values in 
memory (estimated size 17.9 KB, free 6.2 GB)    
20/01/14 12:15:20 INFO KafkaRDD: Computing topic telemetry, partition 1 offsets 
237352170 -> 237352311    20/01/14 12:15:20 INFO CachedKafkaConsumer: 
Initializing cache 16 64 0.75    20/01/14 12:15:20 INFO CachedKafkaConsumer: 
Cache miss for CacheKey(spark-executor-telemetry-streaming-service,telemetry,1) 
   
20/01/14 12:15:20 INFO ConsumerConfig: ConsumerConfig values:             
auto.commit.interval.ms = 5000            
auto.offset.reset = none            
bootstrap.servers = [1,2,3]            
check.crcs = true            
client.id = client-0            
connections.max.idle.ms = 540000            
default.api.timeout.ms = 60000            
enable.auto.commit = false            
exclude.internal.topics = true            
fetch.max.bytes = 52428800            
fetch.max.wait.ms = 500

{code}
 

If we closely observer in the first executor the **auto.offset.reset is 
latest** but for the other executors the **auto.offset.reset = none**

 

Here is how I am creating the streaming context
  
{code:java}
// code placeholderpublic void init() throws Exception {

        final String BOOTSTRAP_SERVERS = PropertyFileReader.getInstance()
                .getProperty("spark.streaming.kafka.broker.list");
        final String DYNAMIC_ALLOCATION_ENABLED = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.dynamicAllocation.enabled");
        final String DYNAMIC_ALLOCATION_SCALING_INTERVAL = 
PropertyFileReader.getInstance()
                
.getProperty("spark.streaming.dynamicAllocation.scalingInterval");
        final String DYNAMIC_ALLOCATION_MIN_EXECUTORS = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.dynamicAllocation.minExecutors");
        final String DYNAMIC_ALLOCATION_MAX_EXECUTORS = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.dynamicAllocation.maxExecutors");
        final String DYNAMIC_ALLOCATION_EXECUTOR_IDLE_TIMEOUT = 
PropertyFileReader.getInstance()
                
.getProperty("spark.streaming.dynamicAllocation.executorIdleTimeout");
        final String DYNAMIC_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT = 
PropertyFileReader.getInstance()
                
.getProperty("spark.streaming.dynamicAllocation.cachedExecutorIdleTimeout");
        final String SPARK_SHUFFLE_SERVICE_ENABLED = 
PropertyFileReader.getInstance()
                .getProperty("spark.shuffle.service.enabled");
        final String SPARK_LOCALITY_WAIT = 
PropertyFileReader.getInstance().getProperty("spark.locality.wait");
        final String SPARK_KAFKA_CONSUMER_POLL_INTERVAL = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.kafka.consumer.poll.ms");
        final String SPARK_KAFKA_MAX_RATE_PER_PARTITION = 
PropertyFileReader.getInstance()
                .getProperty("spark.streaming.kafka.maxRatePerPartition");
        final String SPARK_BATCH_DURATION_IN_SECONDS = 
PropertyFileReader.getInstance()
                .getProperty("spark.batch.duration.in.seconds");
        final String KAFKA_TOPIC = 
PropertyFileReader.getInstance().getProperty("spark.streaming.kafka.topic");

        LOGGER.debug("connecting to brokers ::" + BOOTSTRAP_SERVERS);
        LOGGER.debug("bootstrapping properties to create consumer");

        kafkaParams = new HashMap<>();
        kafkaParams.put("bootstrap.servers", BOOTSTRAP_SERVERS);
        kafkaParams.put("key.deserializer", StringDeserializer.class);
        kafkaParams.put("value.deserializer", StringDeserializer.class);
        kafkaParams.put("group.id", "telemetry-streaming-service");
        kafkaParams.put("auto.offset.reset", "latest");
        kafkaParams.put("enable.auto.commit", false);
        kafkaParams.put("client.id", "client-0");
        // Below property should be enabled in properties and changed based on
        // performance testing
        kafkaParams.put("max.poll.records",
                
PropertyFileReader.getInstance().getProperty("spark.streaming.kafka.max.poll.records"));

        LOGGER.info("registering as a consumer with the topic :: " + 
KAFKA_TOPIC);
        topics = Arrays.asList(KAFKA_TOPIC);
        sparkConf = new SparkConf()
//                
.setMaster(PropertyFileReader.getInstance().getProperty("spark.master.url"))
                
.setAppName(PropertyFileReader.getInstance().getProperty("spark.application.name"))
                .set("spark.streaming.dynamicAllocation.enabled", 
DYNAMIC_ALLOCATION_ENABLED)
                .set("spark.streaming.dynamicAllocation.scalingInterval", 
DYNAMIC_ALLOCATION_SCALING_INTERVAL)
                .set("spark.streaming.dynamicAllocation.minExecutors", 
DYNAMIC_ALLOCATION_MIN_EXECUTORS)
                .set("spark.streaming.dynamicAllocation.maxExecutors", 
DYNAMIC_ALLOCATION_MAX_EXECUTORS)
                .set("spark.streaming.dynamicAllocation.executorIdleTimeout", 
DYNAMIC_ALLOCATION_EXECUTOR_IDLE_TIMEOUT)
                
.set("spark.streaming.dynamicAllocation.cachedExecutorIdleTimeout",
                        DYNAMIC_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT)
                .set("spark.shuffle.service.enabled", 
SPARK_SHUFFLE_SERVICE_ENABLED)
                .set("spark.locality.wait", SPARK_LOCALITY_WAIT)
                .set("spark.streaming.kafka.consumer.poll.ms", 
SPARK_KAFKA_CONSUMER_POLL_INTERVAL)
                .set("spark.streaming.kafka.maxRatePerPartition", 
SPARK_KAFKA_MAX_RATE_PER_PARTITION);

        LOGGER.debug("creating streaming context with minutes batch interval  
::: " + SPARK_BATCH_DURATION_IN_SECONDS);
        streamingContext = new JavaStreamingContext(sparkConf,
                
Durations.seconds(Integer.parseInt(SPARK_BATCH_DURATION_IN_SECONDS)));

        /*
         * todo: add checkpointing to the streaming context to recover from 
driver
         * failures and also for offset management
         */
        LOGGER.info("checkpointing the streaming transactions at hdfs path :: 
/checkpoint");
        streamingContext.checkpoint("/checkpoint");
        streamingContext.addStreamingListener(new DataProcessingListener());
}
{code}
 


> Spark Streaming dynamic executors override or take default kafka parameters 
> in cluster mode
> -------------------------------------------------------------------------------------------
>
>                 Key: SPARK-30522
>                 URL: https://issues.apache.org/jira/browse/SPARK-30522
>             Project: Spark
>          Issue Type: Bug
>          Components: Java API
>    Affects Versions: 2.3.2
>            Reporter: phanikumar
>            Priority: Major
>
> I have written a spark streaming consumer to consume the data from Kafka. I 
> found a weird behavior in my logs. The Kafka topic has 3 partitions and for 
> each partition, an executor is launched by Spark Streaming job.I have written 
> a spark streaming consumer to consume the data from Kafka. I found a weird 
> behavior in my logs. The Kafka topic has 3 partitions and for each partition, 
> an executor is launched by Spark Streaming job.
>  The first executor id always takes the parameters I have provided while 
> creating the streaming context but the executor with ID 2 and 3 always 
> override the kafka parameters.
>     
> {code:java}
> 20/01/14 12:15:05 WARN StreamingContext: Dynamic Allocation is enabled for 
> this application. Enabling Dynamic allocation for Spark Streaming 
> applications can cause data loss if Write Ahead Log is not enabled for 
> non-replayable sour    ces like Flume. See the programming guide for details 
> on how to enable the Write Ahead Log.    
> 20/01/14 12:15:05 INFO FileBasedWriteAheadLog_ReceivedBlockTracker: Recovered 
> 2 write ahead log files from 
> hdfs://tlabnamenode/checkpoint/receivedBlockMetadata    
> 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Slide time = 5000 ms    
> 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Storage level = Serialized 1x 
> Replicated    20/01/14 12:15:05 INFO DirectKafkaInputDStream: Checkpoint 
> interval = null   
>  20/01/14 12:15:05 INFO DirectKafkaInputDStream: Remember interval = 5000 ms  
>   
> 20/01/14 12:15:05 INFO DirectKafkaInputDStream: Initialized and validated 
> org.apache.spark.streaming.kafka010.DirectKafkaInputDStream@12665f3f    
> 20/01/14 12:15:05 INFO ForEachDStream: Slide time = 5000 ms    
> 20/01/14 12:15:05 INFO ForEachDStream: Storage level = Serialized 1x 
> Replicated    20/01/14 12:15:05 INFO ForEachDStream: Checkpoint interval = 
> null    
> 20/01/14 12:15:05 INFO ForEachDStream: Remember interval = 5000 ms    
> 20/01/14 12:15:05 INFO ForEachDStream: Initialized and validated 
> org.apache.spark.streaming.dstream.ForEachDStream@a4d83ac    
> 20/01/14 12:15:05 INFO ConsumerConfig: ConsumerConfig values:             
> auto.commit.interval.ms = 5000            
> auto.offset.reset = latest            
> bootstrap.servers = [1,2,3]            
> check.crcs = true            
> client.id = client-0            
> connections.max.idle.ms = 540000            
> default.api.timeout.ms = 60000            
> enable.auto.commit = false            
> exclude.internal.topics = true            
> fetch.max.bytes = 52428800            
> fetch.max.wait.ms = 500            
> fetch.min.bytes = 1            
> group.id = telemetry-streaming-service            
> heartbeat.interval.ms = 3000            
> interceptor.classes = []            
> internal.leave.group.on.close = true            
> isolation.level = read_uncommitted            
> key.deserializer = class 
> org.apache.kafka.common.serialization.StringDeserializer
>  
> {code}
> Here is the log for other executors.
>     
> {code:java}
>  20/01/14 12:15:04 INFO Executor: Starting executor ID 2 on host 1    
> 20/01/14 12:15:04 INFO Utils: Successfully started service 
> 'org.apache.spark.network.netty.NettyBlockTransferService' on port 40324.    
> 20/01/14 12:15:04 INFO NettyBlockTransferService: Server created on 1    
> 20/01/14 12:15:04 INFO BlockManager: Using 
> org.apache.spark.storage.RandomBlockReplicationPolicy for block replication 
> policy    20/01/14 12:15:04 INFO BlockManagerMaster: Registering BlockManager 
> BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
> 20/01/14 12:15:04 INFO BlockManagerMaster: Registered BlockManager 
> BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
> 20/01/14 12:15:04 INFO BlockManager: external shuffle service port = 7447    
> 20/01/14 12:15:04 INFO BlockManager: Registering executor with local external 
> shuffle service.    
> 20/01/14 12:15:04 INFO TransportClientFactory: Successfully created 
> connection to matrix-hwork-data-05/10.83.34.25:7447 after 1 ms (0 ms spent in 
> bootstraps)    
> 20/01/14 12:15:04 INFO BlockManager: Initialized BlockManager: 
> BlockManagerId(2, matrix-hwork-data-05, 40324, None)    
> 20/01/14 12:15:19 INFO CoarseGrainedExecutorBackend: Got assigned task 1    
> 20/01/14 12:15:19 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)    
> 20/01/14 12:15:19 INFO TorrentBroadcast: Started reading broadcast variable 0 
>    
> 20/01/14 12:15:19 INFO TransportClientFactory: Successfully created 
> connection to matrix-hwork-data-05/10.83.34.25:38759 after 2 ms (0 ms spent 
> in bootstraps)    
> 20/01/14 12:15:20 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes 
> in memory (estimated size 8.1 KB, free 6.2 GB)    
> 20/01/14 12:15:20 INFO TorrentBroadcast: Reading broadcast variable 0 took 
> 163 ms    20/01/14 12:15:20 INFO MemoryStore: Block broadcast_0 stored as 
> values in memory (estimated size 17.9 KB, free 6.2 GB)    
> 20/01/14 12:15:20 INFO KafkaRDD: Computing topic telemetry, partition 1 
> offsets 237352170 -> 237352311    20/01/14 12:15:20 INFO CachedKafkaConsumer: 
> Initializing cache 16 64 0.75    20/01/14 12:15:20 INFO CachedKafkaConsumer: 
> Cache miss for 
> CacheKey(spark-executor-telemetry-streaming-service,telemetry,1)    
> 20/01/14 12:15:20 INFO ConsumerConfig: ConsumerConfig values:             
> auto.commit.interval.ms = 5000            
> auto.offset.reset = none            
> bootstrap.servers = [1,2,3]            
> check.crcs = true            
> client.id = client-0            
> connections.max.idle.ms = 540000            
> default.api.timeout.ms = 60000            
> enable.auto.commit = false            
> exclude.internal.topics = true            
> fetch.max.bytes = 52428800            
> fetch.max.wait.ms = 500
> {code}
>  
> If we closely observer in the first executor the **auto.offset.reset is 
> latest** but for the other executors the **auto.offset.reset = none**
>  
> Here is how I am creating the streaming context
>   
> {code:java}
> // code placeholderpublic void init() throws Exception {
>         final String BOOTSTRAP_SERVERS = PropertyFileReader.getInstance()
>                 .getProperty("spark.streaming.kafka.broker.list");
>         final String DYNAMIC_ALLOCATION_ENABLED = 
> PropertyFileReader.getInstance()
>                 .getProperty("spark.streaming.dynamicAllocation.enabled");
>         final String DYNAMIC_ALLOCATION_SCALING_INTERVAL = 
> PropertyFileReader.getInstance()
>                 
> .getProperty("spark.streaming.dynamicAllocation.scalingInterval");
>         final String DYNAMIC_ALLOCATION_MIN_EXECUTORS = 
> PropertyFileReader.getInstance()
>                 
> .getProperty("spark.streaming.dynamicAllocation.minExecutors");
>         final String DYNAMIC_ALLOCATION_MAX_EXECUTORS = 
> PropertyFileReader.getInstance()
>                 
> .getProperty("spark.streaming.dynamicAllocation.maxExecutors");
>         final String DYNAMIC_ALLOCATION_EXECUTOR_IDLE_TIMEOUT = 
> PropertyFileReader.getInstance()
>                 
> .getProperty("spark.streaming.dynamicAllocation.executorIdleTimeout");
>         final String DYNAMIC_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT = 
> PropertyFileReader.getInstance()
>                 
> .getProperty("spark.streaming.dynamicAllocation.cachedExecutorIdleTimeout");
>         final String SPARK_SHUFFLE_SERVICE_ENABLED = 
> PropertyFileReader.getInstance()
>                 .getProperty("spark.shuffle.service.enabled");
>         final String SPARK_LOCALITY_WAIT = 
> PropertyFileReader.getInstance().getProperty("spark.locality.wait");
>         final String SPARK_KAFKA_CONSUMER_POLL_INTERVAL = 
> PropertyFileReader.getInstance()
>                 .getProperty("spark.streaming.kafka.consumer.poll.ms");
>         final String SPARK_KAFKA_MAX_RATE_PER_PARTITION = 
> PropertyFileReader.getInstance()
>                 .getProperty("spark.streaming.kafka.maxRatePerPartition");
>         final String SPARK_BATCH_DURATION_IN_SECONDS = 
> PropertyFileReader.getInstance()
>                 .getProperty("spark.batch.duration.in.seconds");
>         final String KAFKA_TOPIC = 
> PropertyFileReader.getInstance().getProperty("spark.streaming.kafka.topic");
>         LOGGER.debug("connecting to brokers ::" + BOOTSTRAP_SERVERS);
>         LOGGER.debug("bootstrapping properties to create consumer");
>         kafkaParams = new HashMap<>();
>         kafkaParams.put("bootstrap.servers", BOOTSTRAP_SERVERS);
>         kafkaParams.put("key.deserializer", StringDeserializer.class);
>         kafkaParams.put("value.deserializer", StringDeserializer.class);
>         kafkaParams.put("group.id", "telemetry-streaming-service");
>         kafkaParams.put("auto.offset.reset", "latest");
>         kafkaParams.put("enable.auto.commit", false);
>         kafkaParams.put("client.id", "client-0");
>         // Below property should be enabled in properties and changed based on
>         // performance testing
>         kafkaParams.put("max.poll.records",
>                 
> PropertyFileReader.getInstance().getProperty("spark.streaming.kafka.max.poll.records"));
>         LOGGER.info("registering as a consumer with the topic :: " + 
> KAFKA_TOPIC);
>         topics = Arrays.asList(KAFKA_TOPIC);
>         sparkConf = new SparkConf()
> //                
> .setMaster(PropertyFileReader.getInstance().getProperty("spark.master.url"))
>                 
> .setAppName(PropertyFileReader.getInstance().getProperty("spark.application.name"))
>                 .set("spark.streaming.dynamicAllocation.enabled", 
> DYNAMIC_ALLOCATION_ENABLED)
>                 .set("spark.streaming.dynamicAllocation.scalingInterval", 
> DYNAMIC_ALLOCATION_SCALING_INTERVAL)
>                 .set("spark.streaming.dynamicAllocation.minExecutors", 
> DYNAMIC_ALLOCATION_MIN_EXECUTORS)
>                 .set("spark.streaming.dynamicAllocation.maxExecutors", 
> DYNAMIC_ALLOCATION_MAX_EXECUTORS)
>                 .set("spark.streaming.dynamicAllocation.executorIdleTimeout", 
> DYNAMIC_ALLOCATION_EXECUTOR_IDLE_TIMEOUT)
>                 
> .set("spark.streaming.dynamicAllocation.cachedExecutorIdleTimeout",
>                         DYNAMIC_ALLOCATION_CACHED_EXECUTOR_IDLE_TIMEOUT)
>                 .set("spark.shuffle.service.enabled", 
> SPARK_SHUFFLE_SERVICE_ENABLED)
>                 .set("spark.locality.wait", SPARK_LOCALITY_WAIT)
>                 .set("spark.streaming.kafka.consumer.poll.ms", 
> SPARK_KAFKA_CONSUMER_POLL_INTERVAL)
>                 .set("spark.streaming.kafka.maxRatePerPartition", 
> SPARK_KAFKA_MAX_RATE_PER_PARTITION);
>         LOGGER.debug("creating streaming context with minutes batch interval  
> ::: " + SPARK_BATCH_DURATION_IN_SECONDS);
>         streamingContext = new JavaStreamingContext(sparkConf,
>                 
> Durations.seconds(Integer.parseInt(SPARK_BATCH_DURATION_IN_SECONDS)));
>         /*
>          * todo: add checkpointing to the streaming context to recover from 
> driver
>          * failures and also for offset management
>          */
>         LOGGER.info("checkpointing the streaming transactions at hdfs path :: 
> /checkpoint");
>         streamingContext.checkpoint("/checkpoint");
>         streamingContext.addStreamingListener(new DataProcessingListener());
> }
> {code}
>  
>  
> {code:java}
> public void execute() throws InterruptedException {       
> JavaInputDStream<ConsumerRecord<String, String>> telemetryStream = 
> KafkaUtils.createDirectStream( streamingContext, 
> LocationStrategies.PreferConsistent(), ConsumerStrategies.Subscribe(topics, 
> kafkaParams)); 
> telemetryStream.foreachRDD(rawRDD -> { 
> if (!rawRDD.isEmpty()) { 
> OffsetRange[] offsetRanges = ((HasOffsetRanges) rawRDD.rdd()).offsetRanges(); 
> SparkSession spark = 
> JavaSparkSessionSingleton.getInstance(rawRDD.context().getConf()); 
> JavaPairRDD<String, String> flattenedRawRDD = rawRDD.mapToPair(record -> 
> { 
> ObjectMapper om = new ObjectMapper(); 
> JsonNode root = om.readTree(record.value()); 
> Map<String, JsonNode> flattenedMap = new FlatJsonGenerator(root).flatten(); 
> JsonNode flattenedRootNode = om.convertValue(flattenedMap, JsonNode.class); 
> return new Tuple2<String, 
> String>(flattenedRootNode.get("/name").asText(),flattenedRootNode.toString());
>  
> }); 
>  
> Dataset<Row> rawFlattenedDataRDD = spark.createDataset(flattenedRawRDD.rdd(), 
> Encoders.tuple(Encoders.STRING(), Encoders.STRING())).toDF("sensor_path", 
> "sensor_data"); 
> Dataset<Row> groupedDS = 
> rawFlattenedDataRDD.groupBy(col("sensor_path")).agg(collect_list(col("sensor_data").as("sensor_data")));
>  
> Dataset<Row> lldpGroupedDS = groupedDS.filter((FilterFunction<Row>) r -> 
> r.getString(0).equals("Cisco-IOS-XR-ethernet-lldp-oper:lldp/nodes/node/neighbors/devices/device"));
>  
> HashMap<Object, Object> params = new HashMap<>(); 
> params.put(DPConstants.OTSDB_CONFIG_F_PATH, 
> ExternalizedConfigsReader.getPropertyValueFromCache("/opentsdb.config.file.path"));
>  params.put(DPConstants.OTSDB_CLIENT_TYPE, 
> ExternalizedConfigsReader.getPropertyValueFromCache("/opentsdb.client.type"));
>  
> try { 
> Pipeline lldpPipeline = 
> PipelineFactory.getPipeline(PipelineType.LLDPTELEMETRY); 
> lldpPipeline.process(lldpGroupedDS, null); Pipeline pipeline = 
> PipelineFactory.getPipeline(PipelineType.TELEMETRY); 
> pipeline.process(groupedDS, params); } 
> catch (Throwable t) { 
> t.printStackTrace(); 
> } 
> ((CanCommitOffsets) 
> telemetryStream.inputDStream()).commitAsync(offsetRanges); 
> } }); 
> streamingContext.start(); 
> streamingContext.awaitTermination();
> }
> {code}
>  



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to