[ https://issues.apache.org/jira/browse/SPARK-30218?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17022969#comment-17022969 ]
Rahul Kumar Challapalli commented on SPARK-30218: ------------------------------------------------- [~dongjoon] I am not sure but I was pointing what the OP was asking. Since we don't disambiguate the columns in this case, should we keep this issue as open? > Columns used in inequality conditions for joins not resolved correctly in > case of common lineage > ------------------------------------------------------------------------------------------------ > > Key: SPARK-30218 > URL: https://issues.apache.org/jira/browse/SPARK-30218 > Project: Spark > Issue Type: Bug > Components: PySpark > Affects Versions: 2.3.4, 2.4.4 > Reporter: Francesco Cavrini > Priority: Major > Labels: correctness > > When columns from different data-frames that have a common lineage are used > in inequality conditions in joins, they are not resolved correctly. In > particular, both the column from the left DF and the one from the right DF > are resolved to the same column, thus making the inequality condition either > always satisfied or always not-satisfied. > Minimal example to reproduce follows. > {code:python} > import pyspark.sql.functions as F > data = spark.createDataFrame([["id1", "A", 0], ["id1", "A", 1], ["id2", "A", > 2], ["id2", "A", 3], ["id1", "B", 1] , ["id1", "B", 5], ["id2", "B", 10]], > ["id", "kind", "timestamp"]) > df_left = data.where(F.col("kind") == "A").alias("left") > df_right = data.where(F.col("kind") == "B").alias("right") > conds = [df_left["id"] == df_right["id"]] > conds.append(df_right["timestamp"].between(df_left["timestamp"], > df_left["timestamp"] + 2)) > res = df_left.join(df_right, conds, how="left") > {code} > The result is: > | id|kind|timestamp| id|kind|timestamp| > |id1| A| 0|id1| B| 1| > |id1| A| 0|id1| B| 5| > |id1| A| 1|id1| B| 1| > |id1| A| 1|id1| B| 5| > |id2| A| 2|id2| B| 10| > |id2| A| 3|id2| B| 10| > which violates the condition that the timestamp from the right DF should be > between df_left["timestamp"] and df_left["timestamp"] + 2. > The plan shows the problem in the column resolution. > {code:bash} > == Parsed Logical Plan == > Join LeftOuter, ((id#0 = id#36) && ((timestamp#2L >= timestamp#2L) && > (timestamp#2L <= (timestamp#2L + cast(2 as bigint))))) > :- SubqueryAlias `left` > : +- Filter (kind#1 = A) > : +- LogicalRDD [id#0, kind#1, timestamp#2L], false > +- SubqueryAlias `right` > +- Filter (kind#37 = B) > +- LogicalRDD [id#36, kind#37, timestamp#38L], false > {code} > Note, the columns used in the equality condition of the join have been > correctly resolved. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org