Bozhidar Karaargirov created SPARK-30926: --------------------------------------------
Summary: Same SQL on CSV and on Parquet gives different result Key: SPARK-30926 URL: https://issues.apache.org/jira/browse/SPARK-30926 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 2.4.4 Environment: I run this locally on a windows 10 machine. The java runtime is: {color:#cccccc}openjdk 11.0.5 2019-10-15 OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.5+10) OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.5+10, mixed mode){color} Reporter: Bozhidar Karaargirov SO I played around with a data set from here: [https://www.kaggle.com/hmavrodiev/sofia-air-quality-dataset] I ran the same query for the base CSVs and against a parquet version of them: {color:#008000}SELECT * FROM airQualityP WHERE P1 > 20{color} Here is the csv code: {color:#000080}import {color}{color:#660e7a}session{color}.{color:#660e7a}sqlContext{color}.implicits._ {color:#000080}val {color}df = {color:#660e7a}session{color}.read.option({color:#008000}"header"{color}, {color:#008000}"true"{color}).csv({color:#660e7a}originalDataset{color}) df.createTempView({color:#008000}"airQuality"{color}) {color:#000080}val {color}result = {color:#660e7a}session{color}.sql({color:#008000}"SELECT * FROM airQuality WHERE P1 > 20"{color}) .map(ParticleAirQuality.{color:#660e7a}mappingFunction{color}) println(result.count()) Here is the parquet code: {color:#000080}import {color}{color:#660e7a}session{color}.{color:#660e7a}sqlContext{color}.implicits._ {color:#000080}val {color}df = {color:#660e7a}session{color}.read.option({color:#008000}"header"{color}, {color:#008000}"true"{color}).parquet({color:#660e7a}bigParquetDataset{color}) df.createTempView({color:#008000}"airQualityP"{color}) {color:#000080}val {color}result = {color:#660e7a}session {color} .sql({color:#008000}"SELECT * FROM airQualityP WHERE P1 > 20"{color}) .map(ParticleAirQuality.{color:#660e7a}namedMappingFunction{color}) println(result.count()) And this is how I transform the csv into parquets: {color:#000080}import {color}{color:#660e7a}session{color}.{color:#660e7a}sqlContext{color}.implicits._ {color:#000080}val {color}df = {color:#660e7a}session{color}.read.option({color:#008000}"header"{color}, {color:#008000}"true"{color}) .csv({color:#660e7a}originalDataset{color}) .map(ParticleAirQuality.{color:#660e7a}mappingFunction{color}) df.write.parquet({color:#660e7a}bigParquetDataset{color}) These are the two mapping functions: {color:#000080}val {color}{color:#660e7a}mappingFunction {color}= { r: Row => ParticleAirQuality( r.getString({color:#0000ff}1{color}), r.getString({color:#0000ff}2{color}), r.getString({color:#0000ff}3{color}), r.getString({color:#0000ff}4{color}), r.getString({color:#0000ff}5{color}), { {color:#000080}val {color}p1 = r.getString({color:#0000ff}6{color}) {color:#000080}if{color}(p1 == {color:#000080}null{color}) Double.{color:#660e7a}NaN {color} {color:#000080}else {color}p1.toDouble }, { {color:#000080}val {color}p2 = r.getString({color:#0000ff}7{color}) {color:#000080}if{color}(p2 == {color:#000080}null{color}) Double.{color:#660e7a}NaN {color} {color:#000080}else {color}p2.toDouble } ) } {color:#000080}val {color}{color:#660e7a}namedMappingFunction {color}= { r: Row => ParticleAirQuality( r.getAs[{color:#20999d}String{color}]({color:#008000}"sensor_id"{color}), r.getAs[{color:#20999d}String{color}]({color:#008000}"location"{color}), r.getAs[{color:#20999d}String{color}]({color:#008000}"lat"{color}), r.getAs[{color:#20999d}String{color}]({color:#008000}"lon"{color}), r.getAs[{color:#20999d}String{color}]({color:#008000}"timestamp"{color}), r.getAs[Double]({color:#008000}"P1"{color}), r.getAs[Double]({color:#008000}"P2"{color}) ) } If it matters this is the paths: {color:#000080}val {color}{color:#660e7a}originalDataset {color}= {color:#008000}"D:{color}{color:#000080}\\{color}{color:#008000}source{color}{color:#000080}\\{color}{color:#008000}datasets{color}{color:#000080}\\{color}{color:#008000}sofia-air-quality-dataset{color}{color:#000080}\\{color}{color:#008000}*sds*.csv" {color}{color:#000080}val {color}{color:#660e7a}bigParquetDataset {color}= {color:#008000}"D:{color}{color:#000080}\\{color}{color:#008000}source{color}{color:#000080}\\{color}{color:#008000}datasets{color}{color:#000080}\\{color}{color:#008000}air-tests{color}{color:#000080}\\{color}{color:#008000}all-parquet"{color} The count from the csvs I get is: 33934609 While the count from the parquets is: 35739394 -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org