[ https://issues.apache.org/jira/browse/SPARK-24957?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Dongjoon Hyun updated SPARK-24957: ---------------------------------- Affects Version/s: 2.0.2 > Decimal arithmetic can lead to wrong values using codegen > --------------------------------------------------------- > > Key: SPARK-24957 > URL: https://issues.apache.org/jira/browse/SPARK-24957 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.0.2, 2.1.3, 2.2.2, 2.3.1 > Reporter: David Vogelbacher > Assignee: Marco Gaido > Priority: Major > Labels: correctness > Fix For: 2.2.3, 2.3.2, 2.4.0 > > > I noticed a bug when doing arithmetic on a dataframe containing decimal > values with codegen enabled. > I tried to narrow it down on a small repro and got this (executed in > spark-shell): > {noformat} > scala> val df = Seq( > | ("a", BigDecimal("12.0")), > | ("a", BigDecimal("12.0")), > | ("a", BigDecimal("11.9999999988")), > | ("a", BigDecimal("12.0")), > | ("a", BigDecimal("12.0")), > | ("a", BigDecimal("11.9999999988")), > | ("a", BigDecimal("11.9999999988")) > | ).toDF("text", "number") > df: org.apache.spark.sql.DataFrame = [text: string, number: decimal(38,18)] > scala> val df_grouped_1 = > df.groupBy(df.col("text")).agg(functions.avg(df.col("number")).as("number")) > df_grouped_1: org.apache.spark.sql.DataFrame = [text: string, number: > decimal(38,22)] > scala> df_grouped_1.collect() > res0: Array[org.apache.spark.sql.Row] = Array([a,11.9999999994857142857143]) > scala> val df_grouped_2 = > df_grouped_1.groupBy(df_grouped_1.col("text")).agg(functions.sum(df_grouped_1.col("number")).as("number")) > df_grouped_2: org.apache.spark.sql.DataFrame = [text: string, number: > decimal(38,22)] > scala> df_grouped_2.collect() > res1: Array[org.apache.spark.sql.Row] = > Array([a,1199999999948571.4285714285714285714286]) > scala> val df_total_sum = > df_grouped_1.agg(functions.sum(df_grouped_1.col("number")).as("number")) > df_total_sum: org.apache.spark.sql.DataFrame = [number: decimal(38,22)] > scala> df_total_sum.collect() > res2: Array[org.apache.spark.sql.Row] = Array([11.9999999994857142857143]) > {noformat} > The results of {{df_grouped_1}} and {{df_total_sum}} are correct, whereas the > result of {{df_grouped_2}} is clearly incorrect (it is the value of the > correct result times {{10^14}}). > When codegen is disabled all results are correct. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org