[ 
https://issues.apache.org/jira/browse/SPARK-29952?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Dongjoon Hyun updated SPARK-29952:
----------------------------------
    Affects Version/s:     (was: 3.0.0)
                       3.1.0

> Pandas UDFs do not support vectors as input
> -------------------------------------------
>
>                 Key: SPARK-29952
>                 URL: https://issues.apache.org/jira/browse/SPARK-29952
>             Project: Spark
>          Issue Type: Improvement
>          Components: PySpark, SQL
>    Affects Versions: 3.1.0
>            Reporter: koba
>            Priority: Minor
>
> Currently, pandas udfs do not support columns of vectors as input. Only 
> columns of arrays. This means that feature columns that contain Dense- or 
> Sparse vectors generated by CountVectorizer for example are not supported by 
> pandas udfs out of the box. One needs to convert vectors into arrays first. 
> It was not documented anywhere and I had to find out by trial and error. 
> Below is an example. 
>  
> {code:java}
> from pyspark.sql.functions import udf, pandas_udf
> import pyspark.sql.functions as F
> from pyspark.ml.linalg import DenseVector, Vectors, VectorUDT
> from pyspark.sql.types import *
> import numpy as np
> columns = ['features','id']
> vals = [
>      (DenseVector([1, 2, 1, 3]),1),
>      (DenseVector([2, 2, 1, 3]),2)
> ]
> sdf = spark.createDataFrame(vals,columns)
> sdf.show()
> +-----------------+---+
> |         features| id|
> +-----------------+---+
> |[1.0,2.0,1.0,3.0]|  1|
> |[2.0,2.0,1.0,3.0]|  2|
> +-----------------+---+
> {code}
> {code:java}
> @udf(returnType=ArrayType(FloatType()))
> def vector_to_array(v):
>     # convert column of vectors into column of arrays
>     a = v.values.tolist()
>     return a
> sdf = sdf.withColumn('features_array',vector_to_array('features'))
> sdf.show()
> sdf.dtypes
> +-----------------+---+--------------------+
> |         features| id|      features_array|
> +-----------------+---+--------------------+
> |[1.0,2.0,1.0,3.0]|  1|[1.0, 2.0, 1.0, 3.0]|
> |[2.0,2.0,1.0,3.0]|  2|[2.0, 2.0, 1.0, 3.0]|
> +-----------------+---+--------------------+
> [('features', 'vector'), ('id', 'bigint'), ('features_array', 'array<float>')]
> {code}
> {code:java}
> import pandas as pd
> @pandas_udf(LongType())
> def _pandas_udf(v):
>     res = []
>     for i in v:
>         res.append(i.mean())
>     return pd.Series(res)
> sdf.select(_pandas_udf('features_array')).show()
> +---------------------------+
> |_pandas_udf(features_array)|
> +---------------------------+
> |                          1|
> |                          2|
> +---------------------------+
> {code}
> But If I use the vector column I get the following error.
> {code:java}
> sdf.select(_pandas_udf('features')).show()
> ---------------------------------------------------------------------------
> Py4JJavaError                             Traceback (most recent call last)
> <ipython-input-74-d93e4117f661> in <module>
>      13 
>      14 
> ---> 15 sdf.select(_pandas_udf('features')).show()
> ~/.pyenv/versions/anaconda3-5.3.1/lib/python3.7/site-packages/pyspark/sql/dataframe.py
>  in show(self, n, truncate, vertical)
>     376         """
>     377         if isinstance(truncate, bool) and truncate:
> --> 378             print(self._jdf.showString(n, 20, vertical))
>     379         else:
>     380             print(self._jdf.showString(n, int(truncate), vertical))
> ~/.pyenv/versions/3.4.4/lib/python3.4/site-packages/pyspark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py
>  in __call__(self, *args)
>    1255         answer = self.gateway_client.send_command(command)
>    1256         return_value = get_return_value(
> -> 1257             answer, self.gateway_client, self.target_id, self.name)
>    1258 
>    1259         for temp_arg in temp_args:
> ~/.pyenv/versions/anaconda3-5.3.1/lib/python3.7/site-packages/pyspark/sql/utils.py
>  in deco(*a, **kw)
>      61     def deco(*a, **kw):
>      62         try:
> ---> 63             return f(*a, **kw)
>      64         except py4j.protocol.Py4JJavaError as e:
>      65             s = e.java_exception.toString()
> ~/.pyenv/versions/3.4.4/lib/python3.4/site-packages/pyspark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py
>  in get_return_value(answer, gateway_client, target_id, name)
>     326                 raise Py4JJavaError(
>     327                     "An error occurred while calling {0}{1}{2}.\n".
> --> 328                     format(target_id, ".", name), value)
>     329             else:
>     330                 raise Py4JError(
> Py4JJavaError: An error occurred while calling o2635.showString.
> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 
> in stage 156.0 failed 1 times, most recent failure: Lost task 0.0 in stage 
> 156.0 (TID 606, localhost, executor driver): 
> java.lang.UnsupportedOperationException: Unsupported data type: 
> struct<type:tinyint,size:int,indices:array<int>,values:array<double>>
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$.toArrowType(ArrowUtils.scala:56)
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$.toArrowField(ArrowUtils.scala:92)
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$$anonfun$toArrowSchema$1.apply(ArrowUtils.scala:116)
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$$anonfun$toArrowSchema$1.apply(ArrowUtils.scala:115)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.Iterator$class.foreach(Iterator.scala:891)
>       at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
>       at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>       at org.apache.spark.sql.types.StructType.foreach(StructType.scala:99)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at org.apache.spark.sql.types.StructType.map(StructType.scala:99)
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$.toArrowSchema(ArrowUtils.scala:115)
>       at 
> org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$2.writeIteratorToStream(ArrowPythonRunner.scala:71)
>       at 
> org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:345)
>       at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
>       at 
> org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:194)
> Driver stacktrace:
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>       at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
>       at scala.Option.foreach(Option.scala:257)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
>       at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
>       at 
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
>       at 
> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
>       at 
> org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
>       at 
> org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3383)
>       at 
> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
>       at 
> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2544)
>       at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364)
>       at 
> org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
>       at 
> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
>       at 
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
>       at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363)
>       at org.apache.spark.sql.Dataset.head(Dataset.scala:2544)
>       at org.apache.spark.sql.Dataset.take(Dataset.scala:2758)
>       at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
>       at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
>       at sun.reflect.GeneratedMethodAccessor81.invoke(Unknown Source)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:498)
>       at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
>       at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
>       at py4j.Gateway.invoke(Gateway.java:282)
>       at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
>       at py4j.commands.CallCommand.execute(CallCommand.java:79)
>       at py4j.GatewayConnection.run(GatewayConnection.java:238)
>       at java.lang.Thread.run(Thread.java:748)
> Caused by: java.lang.UnsupportedOperationException: Unsupported data type: 
> struct<type:tinyint,size:int,indices:array<int>,values:array<double>>
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$.toArrowType(ArrowUtils.scala:56)
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$.toArrowField(ArrowUtils.scala:92)
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$$anonfun$toArrowSchema$1.apply(ArrowUtils.scala:116)
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$$anonfun$toArrowSchema$1.apply(ArrowUtils.scala:115)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.Iterator$class.foreach(Iterator.scala:891)
>       at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
>       at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>       at org.apache.spark.sql.types.StructType.foreach(StructType.scala:99)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at org.apache.spark.sql.types.StructType.map(StructType.scala:99)
>       at 
> org.apache.spark.sql.execution.arrow.ArrowUtils$.toArrowSchema(ArrowUtils.scala:115)
>       at 
> org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$2.writeIteratorToStream(ArrowPythonRunner.scala:71)
>       at 
> org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:345)
>       at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
>       at 
> org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:194)
> {code}
>  
>  
>  



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to