[ 
https://issues.apache.org/jira/browse/SPARK-22231?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17071969#comment-17071969
 ] 

DB Tsai commented on SPARK-22231:
---------------------------------

[~fqaiser94] Thanks for continuing this work. We implemented this feature while 
I was at Netflix, and it's ready useful for end users to manipulate nested 
dataframe. Currently, we try to not assign the ticket to prevent someone is 
being assigned but not works on it. Therefore, I unassigned this JIRA.

In your PR, you implement the first part, and I create a sub-task for it. 
https://issues.apache.org/jira/browse/SPARK-31317 Can you change the Jira 
number to  SPARK-31317 to have it properly linked? 

 

> Support of map, filter, withColumn, dropColumn in nested list of structures
> ---------------------------------------------------------------------------
>
>                 Key: SPARK-22231
>                 URL: https://issues.apache.org/jira/browse/SPARK-22231
>             Project: Spark
>          Issue Type: New Feature
>          Components: SQL
>    Affects Versions: 2.2.0
>            Reporter: DB Tsai
>            Priority: Major
>
> At Netflix's algorithm team, we work on ranking problems to find the great 
> content to fulfill the unique tastes of our members. Before building a 
> recommendation algorithms, we need to prepare the training, testing, and 
> validation datasets in Apache Spark. Due to the nature of ranking problems, 
> we have a nested list of items to be ranked in one column, and the top level 
> is the contexts describing the setting for where a model is to be used (e.g. 
> profiles, country, time, device, etc.)  Here is a blog post describing the 
> details, [Distributed Time Travel for Feature 
> Generation|https://medium.com/netflix-techblog/distributed-time-travel-for-feature-generation-389cccdd3907].
>  
> To be more concrete, for the ranks of videos for a given profile_id at a 
> given country, our data schema can be looked like this,
> {code:java}
> root
>  |-- profile_id: long (nullable = true)
>  |-- country_iso_code: string (nullable = true)
>  |-- items: array (nullable = false)
>  |    |-- element: struct (containsNull = false)
>  |    |    |-- title_id: integer (nullable = true)
>  |    |    |-- scores: double (nullable = true)
> ...
> {code}
> We oftentimes need to work on the nested list of structs by applying some 
> functions on them. Sometimes, we're dropping or adding new columns in the 
> nested list of structs. Currently, there is no easy solution in open source 
> Apache Spark to perform those operations using SQL primitives; many people 
> just convert the data into RDD to work on the nested level of data, and then 
> reconstruct the new dataframe as workaround. This is extremely inefficient 
> because all the optimizations like predicate pushdown in SQL can not be 
> performed, we can not leverage on the columnar format, and the serialization 
> and deserialization cost becomes really huge even we just want to add a new 
> column in the nested level.
> We built a solution internally at Netflix which we're very happy with. We 
> plan to make it open source in Spark upstream. We would like to socialize the 
> API design to see if we miss any use-case.  
> The first API we added is *mapItems* on dataframe which take a function from 
> *Column* to *Column*, and then apply the function on nested dataframe. Here 
> is an example,
> {code:java}
> case class Data(foo: Int, bar: Double, items: Seq[Double])
> val df: Dataset[Data] = spark.createDataset(Seq(
>   Data(10, 10.0, Seq(10.1, 10.2, 10.3, 10.4)),
>   Data(20, 20.0, Seq(20.1, 20.2, 20.3, 20.4))
> ))
> val result = df.mapItems("items") {
>   item => item * 2.0
> }
> result.printSchema()
> // root
> // |-- foo: integer (nullable = false)
> // |-- bar: double (nullable = false)
> // |-- items: array (nullable = true)
> // |    |-- element: double (containsNull = true)
> result.show()
> // +---+----+--------------------+
> // |foo| bar|               items|
> // +---+----+--------------------+
> // | 10|10.0|[20.2, 20.4, 20.6...|
> // | 20|20.0|[40.2, 40.4, 40.6...|
> // +---+----+--------------------+
> {code}
> Now, with the ability of applying a function in the nested dataframe, we can 
> add a new function, *withColumn* in *Column* to add or replace the existing 
> column that has the same name in the nested list of struct. Here is two 
> examples demonstrating the API together with *mapItems*; the first one 
> replaces the existing column,
> {code:java}
> case class Item(a: Int, b: Double)
> case class Data(foo: Int, bar: Double, items: Seq[Item])
> val df: Dataset[Data] = spark.createDataset(Seq(
>   Data(10, 10.0, Seq(Item(10, 10.0), Item(11, 11.0))),
>   Data(20, 20.0, Seq(Item(20, 20.0), Item(21, 21.0)))
> ))
> val result = df.mapItems("items") {
>   item => item.withColumn(item("b") + 1 as "b")
> }
> result.printSchema
> root
> // |-- foo: integer (nullable = false)
> // |-- bar: double (nullable = false)
> // |-- items: array (nullable = true)
> // |    |-- element: struct (containsNull = true)
> // |    |    |-- a: integer (nullable = true)
> // |    |    |-- b: double (nullable = true)
> result.show(false)
> // +---+----+----------------------+
> // |foo|bar |items                 |
> // +---+----+----------------------+
> // |10 |10.0|[[10,11.0], [11,12.0]]|
> // |20 |20.0|[[20,21.0], [21,22.0]]|
> // +---+----+----------------------+
> {code}
> and the second one adds a new column in the nested dataframe.
> {code:java}
> val df: Dataset[Data] = spark.createDataset(Seq(
>   Data(10, 10.0, Seq(Item(10, 10.0), Item(11, 11.0))),
>   Data(20, 20.0, Seq(Item(20, 20.0), Item(21, 21.0)))
> ))
> val result = df.mapItems("items") {
>   item => item.withColumn(item("b") + 1 as "c")
> }
> result.printSchema
> root
> // |-- foo: integer (nullable = false)
> // |-- bar: double (nullable = false)
> // |-- items: array (nullable = true)
> // |    |-- element: struct (containsNull = true)
> // |    |    |-- a: integer (nullable = true)
> // |    |    |-- b: double (nullable = true)
> // |    |    |-- c: double (nullable = true)
> result.show(false)
> // +---+----+--------------------------------+
> // |foo|bar |items                           |
> // +---+----+--------------------------------+
> // |10 |10.0|[[10,10.0,11.0], [11,11.0,12.0]]|
> // |20 |20.0|[[20,20.0,21.0], [21,21.0,22.0]]|
> // +---+----+--------------------------------+
> {code}
> We also implement a filter predicate to nested list of struct, and it will 
> return those items which matched the predicate. The following is the API 
> example,
> {code:java}
> val df: Dataset[Data] = spark.createDataset(Seq(
>   Data(10, 10.0, Seq(Item(10, 10.0), Item(11, 11.0))),
>   Data(20, 20.0, Seq(Item(20, 20.0), Item(21, 21.0)))
> ))
> val result = df.filterItems("items") {
>   item => item("a") < 20
> }
> // +---+----+----------------------+
> // |foo|bar |items                 |
> // +---+----+----------------------+
> // |10 |10.0|[[10,10.0], [11,11.0]]|
> // |20 |20.0|[]                    |
> // +---+----+----------------------+
> {code}
> Dropping a column in the nested list of struct can be achieved by similar API 
> to *withColumn*. We add *drop* method to *Column* to implement this. Here is 
> an example,
> {code:java}
> val df: Dataset[Data] = spark.createDataset(Seq(
>   Data(10, 10.0, Seq(Item(10, 10.0), Item(11, 11.0))),
>   Data(20, 20.0, Seq(Item(20, 20.0), Item(21, 21.0)))
> ))
> val result = df.mapItems("items") {
>   item => item.drop("b")
> }
> result.printSchema
> root
> // |-- foo: integer (nullable = false)
> // |-- bar: double (nullable = false)
> // |-- items: array (nullable = true)
> // |    |-- element: struct (containsNull = true)
> // |    |    |-- a: integer (nullable = true)
> result.show(false)
> // +---+----+------------+
> // |foo|bar |items       |
> // +---+----+------------+
> // |10 |10.0|[[10], [11]]|
> // |20 |20.0|[[20], [21]]|
> // +---+----+------------+
> {code}
> Note that all of those APIs are implemented by SQL expression with codegen; 
> as a result, those APIs are not opaque to Spark optimizers, and can fully 
> take advantage of columnar data structure. 
> We're looking forward to the community feedback and suggestion! Thanks.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to