[ 
https://issues.apache.org/jira/browse/SPARK-29906?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Xiao Li updated SPARK-29906:
----------------------------
        Parent: SPARK-31412
    Issue Type: Sub-task  (was: Bug)

> Reading of csv file fails with adaptive execution turned on
> -----------------------------------------------------------
>
>                 Key: SPARK-29906
>                 URL: https://issues.apache.org/jira/browse/SPARK-29906
>             Project: Spark
>          Issue Type: Sub-task
>          Components: SQL
>    Affects Versions: 3.0.0
>         Environment: build from master today nov 14
> commit fca0a6c394990b86304a8f9a64bf4c7ec58abbd6 (HEAD -> master, 
> upstream/master, upstream/HEAD)
> Author: Kevin Yu <q...@us.ibm.com>
> Date:   Thu Nov 14 14:58:32 2019 -0600
> build using:
> $ dev/make-distribution.sh --tgz -Phadoop-2.7 -Dhadoop.version=2.7.4 -Pyarn
> deployed on AWS EMR 5.28 with 10 m5.xlarge slaves 
> in spark-env.sh:
> HADOOP_CONF_DIR=/etc/hadoop/conf
> in spark-defaults.conf:
> spark.master yarn
> spark.submit.deployMode client
> spark.serializer org.apache.spark.serializer.KryoSerializer
> spark.hadoop.yarn.timeline-service.enabled false
> spark.driver.extraClassPath /usr/lib/hadoop-lzo/lib/hadoop-lzo.jar
> spark.driver.extraLibraryPath 
> /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native
> spark.executor.extraClassPath /usr/lib/hadoop-lzo/lib/hadoop-lzo.jar
> spark.executor.extraLibraryPath 
> /usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native
>            Reporter: koert kuipers
>            Assignee: Wenchen Fan
>            Priority: Minor
>              Labels: correctness
>             Fix For: 3.0.0
>
>
> we observed an issue where spark seems to confuse a data line (not the first 
> line of the csv file) for the csv header when it creates the schema.
> {code}
> $ wget http://download.cms.gov/openpayments/PGYR13_P062819.ZIP
> $ unzip PGYR13_P062819.ZIP
> $ hadoop fs -put OP_DTL_GNRL_PGYR2013_P06282019.csv
> $ spark-3.0.0-SNAPSHOT-bin-2.7.4/bin/spark-shell --conf 
> spark.sql.adaptive.enabled=true --num-executors 10
> Setting default log level to "WARN".
> To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use 
> setLogLevel(newLevel).
> 19/11/15 00:26:47 WARN yarn.Client: Neither spark.yarn.jars nor 
> spark.yarn.archive is set, falling back to uploading libraries under 
> SPARK_HOME.
> Spark context Web UI available at http://ip-xx-xxx-x-xxx.ec2.internal:4040
> Spark context available as 'sc' (master = yarn, app id = 
> application_1573772077642_0006).
> Spark session available as 'spark'.
> Welcome to
>       ____              __
>      / __/__  ___ _____/ /__
>     _\ \/ _ \/ _ `/ __/  '_/
>    /___/ .__/\_,_/_/ /_/\_\   version 3.0.0-SNAPSHOT
>       /_/
>          
> Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, Java 1.8.0_222)
> Type in expressions to have them evaluated.
> Type :help for more information.
> scala> spark.read.format("csv").option("header", 
> true).option("enforceSchema", 
> false).load("OP_DTL_GNRL_PGYR2013_P06282019.csv").show(1)
> 19/11/15 00:27:10 WARN util.package: Truncated the string representation of a 
> plan since it was too large. This behavior can be adjusted by setting 
> 'spark.sql.debug.maxToStringFields'.
> [Stage 2:>                                                        (0 + 10) / 
> 17]19/11/15 00:27:11 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 
> 2.0 (TID 35, ip-xx-xxx-x-xxx.ec2.internal, executor 1): 
> java.lang.IllegalArgumentException: CSV header does not conform to the schema.
>  Header: Change_Type, Covered_Recipient_Type, Teaching_Hospital_CCN, 
> Teaching_Hospital_ID, Teaching_Hospital_Name, Physician_Profile_ID, 
> Physician_First_Name, Physician_Middle_Name, Physician_Last_Name, 
> Physician_Name_Suffix, Recipient_Primary_Business_Street_Address_Line1, 
> Recipient_Primary_Business_Street_Address_Line2, Recipient_City, 
> Recipient_State, Recipient_Zip_Code, Recipient_Country, Recipient_Province, 
> Recipient_Postal_Code, Physician_Primary_Type, Physician_Specialty, 
> Physician_License_State_code1, Physician_License_State_code2, 
> Physician_License_State_code3, Physician_License_State_code4, 
> Physician_License_State_code5, 
> Submitting_Applicable_Manufacturer_or_Applicable_GPO_Name, 
> Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_ID, 
> Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_Name, 
> Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_State, 
> Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_Country, 
> Total_Amount_of_Payment_USDollars, Date_of_Payment, 
> Number_of_Payments_Included_in_Total_Amount, 
> Form_of_Payment_or_Transfer_of_Value, Nature_of_Payment_or_Transfer_of_Value, 
> City_of_Travel, State_of_Travel, Country_of_Travel, 
> Physician_Ownership_Indicator, Third_Party_Payment_Recipient_Indicator, 
> Name_of_Third_Party_Entity_Receiving_Payment_or_Transfer_of_Value, 
> Charity_Indicator, Third_Party_Equals_Covered_Recipient_Indicator, 
> Contextual_Information, Delay_in_Publication_Indicator, Record_ID, 
> Dispute_Status_for_Publication, Product_Indicator, 
> Name_of_Associated_Covered_Drug_or_Biological1, 
> Name_of_Associated_Covered_Drug_or_Biological2, 
> Name_of_Associated_Covered_Drug_or_Biological3, 
> Name_of_Associated_Covered_Drug_or_Biological4, 
> Name_of_Associated_Covered_Drug_or_Biological5, 
> NDC_of_Associated_Covered_Drug_or_Biological1, 
> NDC_of_Associated_Covered_Drug_or_Biological2, 
> NDC_of_Associated_Covered_Drug_or_Biological3, 
> NDC_of_Associated_Covered_Drug_or_Biological4, 
> NDC_of_Associated_Covered_Drug_or_Biological5, 
> Name_of_Associated_Covered_Device_or_Medical_Supply1, 
> Name_of_Associated_Covered_Device_or_Medical_Supply2, 
> Name_of_Associated_Covered_Device_or_Medical_Supply3, 
> Name_of_Associated_Covered_Device_or_Medical_Supply4, 
> Name_of_Associated_Covered_Device_or_Medical_Supply5, Program_Year, 
> Payment_Publication_Date
>  Schema: UNCHANGED, Covered Recipient Physician, _c2, _c3, _c4, 278352, JOHN, 
> M, RAY, JR, 3625 CAPE CENTER DR, _c11, FAYETTEVILLE, NC13, 28304-4457, United 
> States15, _c16, _c17, Medical Doctor, Allopathic & Osteopathic 
> Physicians|Family Medicine, NC20, _c21, _c22, _c23, _c24, Par Pharmaceutical, 
> Inc.25, 100000010989, Par Pharmaceutical, Inc.27, NY, United States29, 17.29, 
> 10/23/2013, 1, In-kind items and services, Food and Beverage, _c35, _c36, 
> _c37, No38, No Third Party Payment, _c40, _c41, _c42, _c43, No44, 104522962, 
> No46, Covered, MEGACE ES MEGESTROL ACETATE, _c49, _c50, _c51, _c52, 
> 4988409496, _c54, _c55, _c56, _c57, _c58, _c59, _c60, _c61, _c62, 2013, 
> 06/28/2019
> Expected: UNCHANGED but found: Change_Type
> CSV file: 
> hdfs://ip-xx-xxx-x-xxx.ec2.internal:8020/user/hadoop/OP_DTL_GNRL_PGYR2013_P06282019.csv
>       at 
> org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.$anonfun$checkHeaderColumnNames$2(CSVHeaderChecker.scala:95)
>       at 
> org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.$anonfun$checkHeaderColumnNames$2$adapted(CSVHeaderChecker.scala:91)
>       at scala.Option.foreach(Option.scala:407)
>       at 
> org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.checkHeaderColumnNames(CSVHeaderChecker.scala:91)
>       at 
> org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.$anonfun$checkHeaderColumnNames$6(CSVHeaderChecker.scala:127)
>       at 
> org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.$anonfun$checkHeaderColumnNames$6$adapted(CSVHeaderChecker.scala:126)
>       at scala.Option.foreach(Option.scala:407)
>       at 
> org.apache.spark.sql.catalyst.csv.CSVHeaderChecker.checkHeaderColumnNames(CSVHeaderChecker.scala:126)
>       at 
> org.apache.spark.sql.catalyst.csv.UnivocityParser$.parseIterator(UnivocityParser.scala:340)
>       at 
> org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.readFile(CSVDataSource.scala:106)
>       at 
> org.apache.spark.sql.execution.datasources.v2.csv.CSVPartitionReaderFactory.buildReader(CSVPartitionReaderFactory.scala:68)
>       at 
> org.apache.spark.sql.execution.datasources.v2.FilePartitionReaderFactory.$anonfun$createReader$1(FilePartitionReaderFactory.scala:29)
>       at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
>       at 
> org.apache.spark.sql.execution.datasources.v2.FilePartitionReader.getNextReader(FilePartitionReader.scala:109)
>       at 
> org.apache.spark.sql.execution.datasources.v2.FilePartitionReader.next(FilePartitionReader.scala:42)
>       at 
> org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:62)
>       at 
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
>       at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
>       at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
>  Source)
>       at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>       at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:726)
>       at scala.collection.Iterator$SliceIterator.hasNext(Iterator.scala:266)
>       at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
>       at 
> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:132)
>       at 
> org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59)
>       at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
>       at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52)
>       at org.apache.spark.scheduler.Task.run(Task.scala:127)
>       at 
> org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:425)
>       at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:428)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>       at java.lang.Thread.run(Thread.java:748)
> {code}
> if i instead run:
> {code}
> spark-3.0.0-SNAPSHOT-bin-2.7.4/bin/spark-shell --conf 
> spark.sql.adaptive.enabled=false --num-executors 10
> {code}
> everything runs fine.
> note that we first observed the issue on our inhouse cluster, not on EMR, and 
> it wasn't with a simple .show command, but with job that was doing 
> distributed reading and writing.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to