[ https://issues.apache.org/jira/browse/SPARK-20427?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17107376#comment-17107376 ]
Rafael edited comment on SPARK-20427 at 5/18/20, 7:27 AM: ---------------------------------------------------------- Hey guys, I encountered an issue related to precision issues. Now the code expects the Decimal type we need to have in JDBC metadata precision and scale. [https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/jdbc/JdbcUtils.scala#L402-L414] I found out that in the OracleDB it is valid to have Decimal without these data. When I do a query read metadata for such column I'm getting DATA_PRECISION = Null, and DATA_SCALE = Null. Then when I run the `spark-sql` I'm getting such error: {code:java} java.lang.IllegalArgumentException: requirement failed: Decimal precision 45 exceeds max precision 38 at scala.Predef$.require(Predef.scala:224) at org.apache.spark.sql.types.Decimal.set(Decimal.scala:114) at org.apache.spark.sql.types.Decimal$.apply(Decimal.scala:465) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$makeGetter$3$$anonfun$12.apply(JdbcUtils.scala:407) {code} Do you have a work around how spark-sql can work with such cases? UPDATE: Solved with the custom scheme. was (Author: kyrdan): Hey guys, I encountered an issue related to precision issues. Now the code expects the Decimal type we need to have in JDBC metadata precision and scale. [https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/jdbc/JdbcUtils.scala#L402-L414] I found out that in the OracleDB it is valid to have Decimal without these data. When I do a query read metadata for such column I'm getting DATA_PRECISION = Null, and DATA_SCALE = Null. Then when I run the `spark-sql` I'm getting such error: {code:java} java.lang.IllegalArgumentException: requirement failed: Decimal precision 45 exceeds max precision 38 at scala.Predef$.require(Predef.scala:224) at org.apache.spark.sql.types.Decimal.set(Decimal.scala:114) at org.apache.spark.sql.types.Decimal$.apply(Decimal.scala:465) at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$makeGetter$3$$anonfun$12.apply(JdbcUtils.scala:407) {code} Do you have a work around how spark-sql can work with such cases? > Issue with Spark interpreting Oracle datatype NUMBER > ---------------------------------------------------- > > Key: SPARK-20427 > URL: https://issues.apache.org/jira/browse/SPARK-20427 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.1.0 > Reporter: Alexander Andrushenko > Assignee: Yuming Wang > Priority: Major > Fix For: 2.3.0 > > > In Oracle exists data type NUMBER. When defining a filed in a table of type > NUMBER the field has two components, precision and scale. > For example, NUMBER(p,s) has precision p and scale s. > Precision can range from 1 to 38. > Scale can range from -84 to 127. > When reading such a filed Spark can create numbers with precision exceeding > 38. In our case it has created fields with precision 44, > calculated as sum of the precision (in our case 34 digits) and the scale (10): > "...java.lang.IllegalArgumentException: requirement failed: Decimal precision > 44 exceeds max precision 38...". > The result was, that a data frame was read from a table on one schema but > could not be inserted in the identical table on other schema. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org