[ https://issues.apache.org/jira/browse/SPARK-31854?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Takeshi Yamamuro updated SPARK-31854: ------------------------------------- Component/s: (was: Spark Core) SQL > Different results of query execution with wholestage codegen on and off > ----------------------------------------------------------------------- > > Key: SPARK-31854 > URL: https://issues.apache.org/jira/browse/SPARK-31854 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.4.5, 3.0.0 > Reporter: Pasha Finkeshteyn > Priority: Major > > Preface: I'm creating Kotlin API for spark to take best parts from three > worlds — spark scala, spark java and kotlin. > What is nice — it works in most scenarios. > But i've hit following cornercase: > {code:scala} > withSpark(props = mapOf("spark.sql.codegen.wholeStage" to true)) { > dsOf(1, null, 2) > .map { c(it) } > .debugCodegen() > .show() > } > {code} > c(it) is creation of unnamed tuple > It fails with exception > {code} > java.lang.NullPointerException: Null value appeared in non-nullable field: > top level Product or row object > If the schema is inferred from a Scala tuple/case class, or a Java bean, > please try to use scala.Option[_] or other nullable types (e.g. > java.lang.Integer instead of int/scala.Int). > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.serializefromobject_doConsume_0$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.mapelements_doConsume_0$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.deserializetoobject_doConsume_0$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown > Source) > … > {code} > I know, in Scala it won't work, so I could stop here. But it works in Kotlin > if I turn wholestage codegen off! > Moreover, if we will dig into generated code (when wholestage codegen is on), > we'll see that basically flow is following: > If one of elements in source dataset was null we wil throw NPE no matter what. > Flow is as follows: > {code} > private void serializefromobject_doConsume_0(org.jetbrains.spark.api.Arity1 > serializefromobject_expr_0_0, boolean serializefromobject_exprIsNull_0_0) > throws java.io.IOException { > serializefromobject_doConsume_0(mapelements_value_1, > mapelements_isNull_1); > mapelements_isNull_1 = mapelements_resultIsNull_0; > mapelements_resultIsNull_0 = mapelements_exprIsNull_0_0; > private void mapelements_doConsume_0(java.lang.Integer > mapelements_expr_0_0, boolean mapelements_exprIsNull_0_0) throws > java.io.IOException { > mapelements_doConsume_0(deserializetoobject_value_0, > deserializetoobject_isNull_0); > deserializetoobject_resultIsNull_0 = > deserializetoobject_exprIsNull_0_0; > private void > deserializetoobject_doConsume_0(InternalRow localtablescan_row_0, int > deserializetoobject_expr_0_0, boolean deserializetoobject_exprIsNull_0_0) > throws java.io.IOException { > > deserializetoobject_doConsume_0(localtablescan_row_0, localtablescan_value_0, > localtablescan_isNull_0); > boolean localtablescan_isNull_0 = > localtablescan_row_0.isNullAt(0); > mapelements_isNull_1 = true; > {code} > You can find generated code in it's original view and slightly simplified and > refacored version > [here|https://gist.github.com/asm0dey/5c0fa4c985ab999b383d16257b515100] > I believe that Spark should not behave differently when wholestage codegen is > on and off and differences in behavior look like a bug. > My Spark version is 3.0.0-preview2 -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org