[ https://issues.apache.org/jira/browse/SPARK-32604?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Hyukjin Kwon updated SPARK-32604: --------------------------------- Component/s: PySpark > Bug in ALSModel Python Documentation > ------------------------------------ > > Key: SPARK-32604 > URL: https://issues.apache.org/jira/browse/SPARK-32604 > Project: Spark > Issue Type: Bug > Components: Documentation, PySpark > Affects Versions: 2.4.0, 3.0.0 > Reporter: Zach Cahoone > Priority: Minor > > In the ALSModel documentation > ([https://spark.apache.org/docs/latest/ml-collaborative-filtering.html]), > there is a bug which causes data frame creation to fail with the following > error: > {code:java} > Py4JJavaError: An error occurred while calling > z:org.apache.spark.api.python.PythonRDD.runJob. > : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 > in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 > (TID 15, 10.0.0.133, executor 10): > org.apache.spark.api.python.PythonException: Traceback (most recent call > last): > File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 372, > in main > process() > File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 367, > in process > serializer.dump_stream(func(split_index, iterator), outfile) > File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/serializers.py", line > 390, in dump_stream > vs = list(itertools.islice(iterator, batch)) > File "/usr/lib/spark/python/pyspark/rdd.py", line 1354, in takeUpToNumLeft > yield next(iterator) > File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/util.py", line 99, in > wrapper > return f(*args, **kwargs) > File "<ipython-input-5-86574b26abad>", line 24, in <lambda> > NameError: name 'long' is not defined > at > org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:456) > at > org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:592) > at > org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:575) > at > org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:410) > at > org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) > at scala.collection.Iterator$class.foreach(Iterator.scala:891) > at > org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48) > at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310) > at > org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302) > at > org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28) > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289) > at > org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28) > at > org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:153) > at > org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:153) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2121) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2121) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) > at org.apache.spark.scheduler.Task.run(Task.scala:121) > at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407) > at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1890) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1877) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:929) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:929) > at scala.Option.foreach(Option.scala:257) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:929) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2111) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2060) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2049) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) > at > org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:740) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2081) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2102) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2121) > at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:153) > at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:282) > at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:238) > at java.lang.Thread.run(Thread.java:745) > Caused by: org.apache.spark.api.python.PythonException: Traceback (most > recent call last): > File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 372, > in main > process() > File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 367, > in process > serializer.dump_stream(func(split_index, iterator), outfile) > File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/serializers.py", line > 390, in dump_stream > vs = list(itertools.islice(iterator, batch)) > File "/usr/lib/spark/python/pyspark/rdd.py", line 1354, in takeUpToNumLeft > yield next(iterator) > File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/util.py", line 99, in > wrapper > return f(*args, **kwargs) > File "<ipython-input-5-86574b26abad>", line 24, in <lambda> > NameError: name 'long' is not defined > at > org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:456) > at > org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:592) > at > org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:575) > at > org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:410) > at > org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) > at scala.collection.Iterator$class.foreach(Iterator.scala:891) > at > org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48) > at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310) > at > org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302) > at > org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28) > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289) > at > org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28) > at > org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:153) > at > org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:153) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2121) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2121) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) > at org.apache.spark.scheduler.Task.run(Task.scala:121) > at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407) > at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > ... 1 more > {code} > To replicate the error try to train an ALSModel with the documentation code. > > To fix, change "long" to "int" in the following line: > {code:java} > ratingsRDD = parts.map(lambda p: Row(userId=int(p[0]), movieId=int(p[1]), > rating=float(p[2]), timestamp=long(p[3]))){code} > > The referenced example code already has this change, but it has not been > updated in the documentation: > [https://github.com/apache/spark/blob/master/examples/src/main/python/ml/als_example.py] > -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org