[ 
https://issues.apache.org/jira/browse/SPARK-32614?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Chandan updated SPARK-32614:
----------------------------
    Component/s: Spark Core

> Support for treating the line as valid record if it starts with \u0000 or 
> null character, or starts with any character mentioned as comment
> -------------------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-32614
>                 URL: https://issues.apache.org/jira/browse/SPARK-32614
>             Project: Spark
>          Issue Type: Improvement
>          Components: Spark Core, SQL
>    Affects Versions: 3.0.0
>            Reporter: Chandan
>            Assignee: Jeff Evans
>            Priority: Major
>
> Currently, the delimiter option Spark 2.0 to read and split CSV files/data 
> only support a single character delimiter. If we try to provide multiple 
> delimiters, we observer the following error message.
> eg: Dataset<Row> df = spark.read().option("inferSchema", "true")
>                                                           .option("header", 
> "false")
>                                                          .option("delimiter", 
> ", ")
>                                                           .csv("C:\test.txt");
> Exception in thread "main" java.lang.IllegalArgumentException: Delimiter 
> cannot be more than one character: , 
> at 
> org.apache.spark.sql.execution.datasources.csv.CSVUtils$.toChar(CSVUtils.scala:111)
>  at 
> org.apache.spark.sql.execution.datasources.csv.CSVOptions.<init>(CSVOptions.scala:83)
>  at 
> org.apache.spark.sql.execution.datasources.csv.CSVOptions.<init>(CSVOptions.scala:39)
>  at 
> org.apache.spark.sql.execution.datasources.csv.CSVFileFormat.inferSchema(CSVFileFormat.scala:55)
>  at 
> org.apache.spark.sql.execution.datasources.DataSource$$anonfun$8.apply(DataSource.scala:202)
>  at 
> org.apache.spark.sql.execution.datasources.DataSource$$anonfun$8.apply(DataSource.scala:202)
>  at scala.Option.orElse(Option.scala:289)
>  at 
> org.apache.spark.sql.execution.datasources.DataSource.getOrInferFileFormatSchema(DataSource.scala:201)
>  at 
> org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:392)
>  at 
> org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:239)
>  at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:227)
>  at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:596)
>  at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:473)
>  
> Generally, the data to be processed contains multiple character delimiters 
> and presently we need to do a manual data clean up on the source/input file, 
> which doesn't work well in large applications which consumes numerous files.
> There seems to be work-around like reading data as text and using the split 
> option, but this in my opinion defeats the purpose, advantage and efficiency 
> of a direct read from CSV file.
>  



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to