[ 
https://issues.apache.org/jira/browse/SPARK-32614?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Chandan updated SPARK-32614:
----------------------------
    Description: 
In most of the data ware housing scenarios files does not have comment records 
and every line needs to be treated as a valid record even though it starts with 
default comment character as \u0000 or null character.Though user can set any 
comment character other than \u0000, but there is a chance the actual record 
can start with those characters.

Currently for the below piece of code and the given testdata where first row 
starts with null \u0000
character it will throw the below error.

*eg: *val df = 
spark.read.option("delimiter",",").csv("file:/E:/Data/Testdata.dat");
      df.show(false);

*+TestData+*
 
 !screenshot-1.png! 

Internal state when error was thrown: line=1, column=0, record=0, charIndex=7
        at 
com.univocity.parsers.common.AbstractParser.handleException(AbstractParser.java:339)
        at 
com.univocity.parsers.common.AbstractParser.parseLine(AbstractParser.java:552)
        at 
org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.inferFromDataset(CSVDataSource.scala:160)
        at 
org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.infer(CSVDataSource.scala:148)
        at 
org.apache.spark.sql.execution.datasources.csv.CSVDataSource.inferSchema(CSVDataSource.scala:62)
        at 
org.apache.spark.sql.execution.datasources.csv.CSVFileFormat.inferSchema(CSVFileFormat.scala:57)

*Note:*

Though its the limitation of the univocity parser and the workaround is to 
provide any other comment character by mentioning .option("comment","#"), but 
if my actual data starts with this character then the particular row will be 
discarded.

Currently I pushed the code in univocity parser to handle this scenario as part 
of the below PR
https://github.com/uniVocity/univocity-parsers/pull/412

please accept the jira so that we can enable this feature in spark-csv by 
adding a parameter in spark csvoptions.
 

  was:
In most of the data ware housing scenarios files does not have comment records 
and every line needs to be treated as a valid record even though it starts with 
default comment character as \u0000 or null character.Though user can set any 
comment character other than \u0000, but there is a chance the actual record 
can start with those characters.

Currently for the below piece of code and the given testdata where first row 
starts with null \u0000
character it will throw the below error.

Internal state when error was thrown: line=1, column=0, record=0, charIndex=7
        at 
com.univocity.parsers.common.AbstractParser.handleException(AbstractParser.java:339)
        at 
com.univocity.parsers.common.AbstractParser.parseLine(AbstractParser.java:552)
        at 
org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.inferFromDataset(CSVDataSource.scala:160)
        at 
org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.infer(CSVDataSource.scala:148)
        at 
org.apache.spark.sql.execution.datasources.csv.CSVDataSource.inferSchema(CSVDataSource.scala:62)
        at 
org.apache.spark.sql.execution.datasources.csv.CSVFileFormat.inferSchema(CSVFileFormat.scala:57)

eg: val df = 
spark.read.option("delimiter",",").csv("file:/E:/Data/Testdata.dat");
      df.show(false);

*+TestData+*
 
 !screenshot-1.png! 
 


> Support for treating the line as valid record if it starts with \u0000 or 
> null character, or starts with any character mentioned as comment
> -------------------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-32614
>                 URL: https://issues.apache.org/jira/browse/SPARK-32614
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core, SQL
>    Affects Versions: 2.4.5, 3.0.0
>            Reporter: Chandan
>            Assignee: Jeff Evans
>            Priority: Major
>         Attachments: screenshot-1.png
>
>
> In most of the data ware housing scenarios files does not have comment 
> records and every line needs to be treated as a valid record even though it 
> starts with default comment character as \u0000 or null character.Though user 
> can set any comment character other than \u0000, but there is a chance the 
> actual record can start with those characters.
> Currently for the below piece of code and the given testdata where first row 
> starts with null \u0000
> character it will throw the below error.
> *eg: *val df = 
> spark.read.option("delimiter",",").csv("file:/E:/Data/Testdata.dat");
>       df.show(false);
> *+TestData+*
>  
>  !screenshot-1.png! 
> Internal state when error was thrown: line=1, column=0, record=0, charIndex=7
>       at 
> com.univocity.parsers.common.AbstractParser.handleException(AbstractParser.java:339)
>       at 
> com.univocity.parsers.common.AbstractParser.parseLine(AbstractParser.java:552)
>       at 
> org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.inferFromDataset(CSVDataSource.scala:160)
>       at 
> org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.infer(CSVDataSource.scala:148)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVDataSource.inferSchema(CSVDataSource.scala:62)
>       at 
> org.apache.spark.sql.execution.datasources.csv.CSVFileFormat.inferSchema(CSVFileFormat.scala:57)
> *Note:*
> Though its the limitation of the univocity parser and the workaround is to 
> provide any other comment character by mentioning .option("comment","#"), but 
> if my actual data starts with this character then the particular row will be 
> discarded.
> Currently I pushed the code in univocity parser to handle this scenario as 
> part of the below PR
> https://github.com/uniVocity/univocity-parsers/pull/412
> please accept the jira so that we can enable this feature in spark-csv by 
> adding a parameter in spark csvoptions.
>  



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to