[ 
https://issues.apache.org/jira/browse/SPARK-32046?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17177398#comment-17177398
 ] 

Takeshi Yamamuro edited comment on SPARK-32046 at 8/14/20, 7:25 AM:
--------------------------------------------------------------------

This issue depends on ZP or Jupyter? If so, I think it is hard to reproduce 
this issue...  The -Non-deterministic- exprs can change output if cache broken 
in the case. So, I think it is not a good idea for applications to depend on 
those kinds of values, either way.


was (Author: maropu):
This issue depends on ZP or Jupyter? If so, I think it is hard to reproduce 
this issue...  Non-deterministic exprs can change output if cache broken in the 
case. So, I think it is not a good idea for applications to depend on those 
kinds of values, either way.

> current_timestamp called in a cache dataframe freezes the time for all future 
> calls
> -----------------------------------------------------------------------------------
>
>                 Key: SPARK-32046
>                 URL: https://issues.apache.org/jira/browse/SPARK-32046
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.3.0, 2.4.4, 3.0.0
>            Reporter: Dustin Smith
>            Priority: Minor
>              Labels: caching, sql, time
>
> If I call current_timestamp 3 times while caching the dataframe variable in 
> order to freeze that dataframe's time, the 3rd dataframe time and beyond 
> (4th, 5th, ...) will be frozen to the 2nd dataframe's time. The 1st dataframe 
> and the 2nd will differ in time but will become static on the 3rd usage and 
> beyond (when running on Zeppelin or Jupyter).
> Additionally, caching only caused 2 dataframes to cache skipping the 3rd. 
> However,
> {code:java}
> val df = Seq(java.time.LocalDateTime.now.toString).toDF("datetime").cache
> df.count
> // this can be run 3 times no issue.
> // then later cast to TimestampType{code}
> doesn't have this problem and all 3 dataframes cache with correct times 
> displaying.
> Running the code in shell and Jupyter or Zeppelin (ZP) also produces 
> different results. In the shell, you only get 1 unique time no matter how 
> many times you run it, current_timestamp. However, in ZP or Jupyter I have 
> always received 2 unique times before it froze.
>  
> {code:java}
> val df1 = spark.range(1).select(current_timestamp as "datetime").cache
> df1.count
> df1.show(false)
> Thread.sleep(9500)
> val df2 = spark.range(1).select(current_timestamp as "datetime").cache
> df2.count 
> df2.show(false)
> Thread.sleep(9500)
> val df3 = spark.range(1).select(current_timestamp as "datetime").cache 
> df3.count 
> df3.show(false){code}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to