[ https://issues.apache.org/jira/browse/SPARK-20880?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Vinod KC updated SPARK-20880: ----------------------------- Description: When spark SQL is used with Avro-backed HIVE tables, intermittently getting NPE from org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.supportedCategories. Root cause is due to race condition in hive 1.2.1 jar used in Spark SQL . In HIVE 2.3 this issue has been fixed (HIVE JIRA: https://issues.apache.org/jira/browse/HIVE-16175. ), since Spark is still using Hive 1.2.1 jars we are still getting into a race condition. One workaround is to run Spark with a single task per executor, however, it will slow down the jobs. Exception stack trace 13/05/07 09:18:39 WARN scheduler.TaskSetManager: Lost task 18.0 in stage 0.0 (TID 18, aiyhyashu.dxc.com): java.lang.NullPointerException at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.supportedCategories(AvroObjectInspectorGenerator.java:142) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:91) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:104) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:104) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:120) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspector(AvroObjectInspectorGenerator.java:83) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.<init>(AvroObjectInspectorGenerator.java:56) at org.apache.hadoop.hive.serde2.avro.AvroSerDe.initialize(AvroSerDe.java:124) at org.apache.spark.sql.hive.HadoopTableReader$$anonfun$5$$anonfun$10.apply(TableReader.scala:251) at org.apache.spark.sql.hive.HadoopTableReader$$anonfun$5$$anonfun$10.apply(TableReader.scala:239) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:785) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:785) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:105) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) at org.apache.spark.scheduler.Task.run(Task.scala:86) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Note: Similar issues are already reported in past but still no solution [https://www.mail-archive.com/user@spark.apache.org/msg61566.html] was: When spark SQL is used with Avro-backed HIVE tables, intermittently getting NPE from org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.supportedCategories. Root cause is due race condition in hive 1.2.1 jar used in Spark SQL . In HIVE 2.3 this issue has been fixed (HIVE JIRA: https://issues.apache.org/jira/browse/HIVE-16175. ), since Spark is still using Hive 1.2.1 jars we are still getting into race condition. One workaround is to run Spark with a single task per executor, however it will slow down the jobs. Exception stack trace 13/05/07 09:18:39 WARN scheduler.TaskSetManager: Lost task 18.0 in stage 0.0 (TID 18, aiyhyashu.dxc.com): java.lang.NullPointerException at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.supportedCategories(AvroObjectInspectorGenerator.java:142) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:91) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:104) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:104) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:120) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspector(AvroObjectInspectorGenerator.java:83) at org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.<init>(AvroObjectInspectorGenerator.java:56) at org.apache.hadoop.hive.serde2.avro.AvroSerDe.initialize(AvroSerDe.java:124) at org.apache.spark.sql.hive.HadoopTableReader$$anonfun$5$$anonfun$10.apply(TableReader.scala:251) at org.apache.spark.sql.hive.HadoopTableReader$$anonfun$5$$anonfun$10.apply(TableReader.scala:239) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:785) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:785) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:105) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) at org.apache.spark.scheduler.Task.run(Task.scala:86) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Note: Similar issues are already reported in past but still no solution [https://www.mail-archive.com/user@spark.apache.org/msg61566.html] > When spark SQL is used with Avro-backed HIVE tables, NPE from > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.supportedCategories. > ---------------------------------------------------------------------------------------------------------------------------------------------------- > > Key: SPARK-20880 > URL: https://issues.apache.org/jira/browse/SPARK-20880 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.2.0 > Reporter: Vinod KC > Priority: Minor > > When spark SQL is used with Avro-backed HIVE tables, intermittently getting > NPE from > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.supportedCategories. > Root cause is due to race condition in hive 1.2.1 jar used in Spark SQL . > In HIVE 2.3 this issue has been fixed (HIVE JIRA: > https://issues.apache.org/jira/browse/HIVE-16175. ), since Spark is still > using Hive 1.2.1 jars we are still getting into a race condition. > One workaround is to run Spark with a single task per executor, however, it > will slow down the jobs. > Exception stack trace > 13/05/07 09:18:39 WARN scheduler.TaskSetManager: Lost task 18.0 in stage 0.0 > (TID 18, aiyhyashu.dxc.com): java.lang.NullPointerException > at > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.supportedCategories(AvroObjectInspectorGenerator.java:142) > at > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:91) > at > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:104) > at > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:104) > at > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspectorWorker(AvroObjectInspectorGenerator.java:120) > at > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.createObjectInspector(AvroObjectInspectorGenerator.java:83) > at > org.apache.hadoop.hive.serde2.avro.AvroObjectInspectorGenerator.<init>(AvroObjectInspectorGenerator.java:56) > at > org.apache.hadoop.hive.serde2.avro.AvroSerDe.initialize(AvroSerDe.java:124) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$5$$anonfun$10.apply(TableReader.scala:251) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$5$$anonfun$10.apply(TableReader.scala:239) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:785) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:785) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:105) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) > at org.apache.spark.scheduler.Task.run(Task.scala:86) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Note: Similar issues are already reported in past but still no solution > [https://www.mail-archive.com/user@spark.apache.org/msg61566.html] -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org