[ https://issues.apache.org/jira/browse/SPARK-32724?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Hyukjin Kwon resolved SPARK-32724. ---------------------------------- Resolution: Invalid > java.io.IOException: Stream is corrupted when tried to inner join 4 huge > tables. Currently using pyspark version 2.4.0-cdh6.3.1 > --------------------------------------------------------------------------------------------------------------------------------- > > Key: SPARK-32724 > URL: https://issues.apache.org/jira/browse/SPARK-32724 > Project: Spark > Issue Type: Question > Components: PySpark, Spark Core > Affects Versions: 2.4.0 > Reporter: Kannan > Priority: Major > > When i try to join the 4 tables with 1M data i am getting below error. > Py4JJavaError: An error occurred while calling o453.count. : > org.apache.spark.SparkException: Job aborted due to stage failure: Aborting > TaskSet 27.0 because task 9 (partition 9) cannot run anywhere due to node and > executor blacklist. Most recent failure: Lost task 9.1 in stage 27.0 (TID > 267, si-159l.de.des.com, executor 17): java.io.IOException: Stream is > corrupted at > net.jpountz.lz4.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:202) at > net.jpountz.lz4.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:228) at > net.jpountz.lz4.LZ4BlockInputStream.read(LZ4BlockInputStream.java:157) at > org.apache.spark.io.ReadAheadInputStream$1.run(ReadAheadInputStream.java:168) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) Blacklisting behavior can be > configured via spark.blacklist.*. at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1890) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1878) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1877) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:929) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:929) > at scala.Option.foreach(Option.scala:257) at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:929) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2111) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2060) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2049) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at > org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:740) at > org.apache.spark.SparkContext.runJob(SparkContext.scala:2081) at > org.apache.spark.SparkContext.runJob(SparkContext.scala:2102) at > org.apache.spark.SparkContext.runJob(SparkContext.scala:2121) at > org.apache.spark.SparkContext.runJob(SparkContext.scala:2146) at > org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945) at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:363) at > org.apache.spark.rdd.RDD.collect(RDD.scala:944) at > org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:299) > at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2830) at > org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2829) at > org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364) at > org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78) > at > org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73) > at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363) at > org.apache.spark.sql.Dataset.count(Dataset.scala:2829) at > sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) at > py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at > py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at > py4j.Gateway.invoke(Gateway.java:282) at > py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at > py4j.commands.CallCommand.execute(CallCommand.java:79) at > py4j.GatewayConnection.run(GatewayConnection.java:238) at > java.lang.Thread.run(Thread.java:748) -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org