[ https://issues.apache.org/jira/browse/SPARK-32885?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Apache Spark reassigned SPARK-32885: ------------------------------------ Assignee: (was: Apache Spark) > Add DataStreamReader.table API > ------------------------------ > > Key: SPARK-32885 > URL: https://issues.apache.org/jira/browse/SPARK-32885 > Project: Spark > Issue Type: New Feature > Components: Structured Streaming > Affects Versions: 3.1.0 > Reporter: Yuanjian Li > Priority: Major > > This ticket aims to add a new `table` API in DataStreamReader, which is > similar to the table API in DataFrameReader. Users can directly use this API > to get a Streaming DataFrame on a table. Below is a simple example: > Application 1 for initializing and starting the streaming job: > {code:java} > val path = "/home/yuanjian.li/runtime/to_be_deleted" > val tblName = "my_table" > // Write some data to `my_table` > spark.range(3).write.format("parquet").option("path", > path).saveAsTable(tblName) > // Read the table as a streaming source, write result to destination directory > val table = spark.readStream.table(tblName) > table.writeStream.format("parquet").option("checkpointLocation", > "/home/yuanjian.li/runtime/to_be_deleted_ck").start("/home/yuanjian.li/runtime/to_be_deleted_2") > {code} > Application 2 for appending new data: > {code:java} > // Append new data into the path > spark.range(5).write.format("parquet").option("path", > "/home/yuanjian.li/runtime/to_be_deleted").mode("append").save(){code} > Check result: > {code:java} > // The desitination directory should contains all written data > spark.read.parquet("/home/yuanjian.li/runtime/to_be_deleted_2").show() > {code} > -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org