[ https://issues.apache.org/jira/browse/SPARK-33113?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17213709#comment-17213709 ]
Jacek Pliszka commented on SPARK-33113: --------------------------------------- sessionInfo() R version 3.6.3 (2020-02-29) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 18.04.5 LTS Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3 LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] SparkR_3.0.0 arrow_1.0.1 loaded via a namespace (and not attached): [1] Rcpp_1.0.5 digest_0.6.25 assertthat_0.2.1 R6_2.4.1 [5] magrittr_1.5 rlang_0.4.8 TeachingDemos_2.10 hwriter_1.3.2 [9] hwriterPlus_1.0-3 vctrs_0.2.4 tools_3.6.3 bit64_0.9-7 [13] glue_1.4.2 purrr_0.3.4 bit_1.1-15.2 compiler_3.6.3 [17] Rserve_1.8-6 htmltools_0.4.0 tidyselect_1.0.0 > [SparkR] gapply works with arrow disabled, fails with arrow enabled > stringsAsFactors=TRUE > ----------------------------------------------------------------------------------------- > > Key: SPARK-33113 > URL: https://issues.apache.org/jira/browse/SPARK-33113 > Project: Spark > Issue Type: Bug > Components: R > Affects Versions: 3.0.0, 3.0.1 > Reporter: Jacek Pliszka > Priority: Major > > Running in databricks on Azure > {code} > library("arrow") > library("SparkR") > df <- as.DataFrame(list("A", "B", "C"), schema="ColumnA") > udf <- function(key, x) data.frame(out=c("dfs")) > {code} > > This works: > {code} > sparkR.session(master = "local[*]", > sparkConfig=list(spark.sql.execution.arrow.sparkr.enabled = "false")) > df1 <- gapply(df, c("ColumnA"), udf, "out String") > collect(df1) > {code} > This fails: > {code} > sparkR.session(master = "local[*]", > sparkConfig=list(spark.sql.execution.arrow.sparkr.enabled = "true")) > df2 <- gapply(df, c("ColumnA"), udf, "out String") > collect(df2) > {code} > > with error > {code} > Error in readBin(con, raw(), as.integer(dataLen), endian = "big") : }}Error > in readBin(con, raw(), as.integer(dataLen), endian = "big") : invalid 'n' > argument > Error in readBin(con, raw(), as.integer(dataLen), endian = "big") : invalid > 'n' argument In addition: Warning messages: 1: Use 'read_ipc_stream' or > 'read_feather' instead. 2: Use 'read_ipc_stream' or 'read_feather' instead. > {code} > > Clicking through Failed Stages to Failure Reason: > > {code} > Job aborted due to stage failure: Task 49 in stage 1843.0 failed 4 times, > most recent failure: Lost task 49.3 in stage 1843.0 (TID 89810, 10.99.0.5, > executor 0): java.lang.UnsupportedOperationException > at > org.apache.spark.sql.vectorized.ArrowColumnVector$ArrowVectorAccessor.getUTF8String(ArrowColumnVector.java:233) > at > org.apache.spark.sql.vectorized.ArrowColumnVector.getUTF8String(ArrowColumnVector.java:109) > at > org.apache.spark.sql.vectorized.ColumnarBatchRow.getUTF8String(ColumnarBatch.java:220) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown > Source) > at scala.collection.Iterator$$anon$10.next(Iterator.scala:459) > at > org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$1.$anonfun$next$1(ArrowConverters.scala:131) > at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) > at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1559) > at > org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$1.next(ArrowConverters.scala:140) > at > org.apache.spark.sql.execution.arrow.ArrowConverters$$anon$1.next(ArrowConverters.scala:115) > at scala.collection.Iterator$$anon$10.next(Iterator.scala:459) > at scala.collection.Iterator.foreach(Iterator.scala:941) > at scala.collection.Iterator.foreach$(Iterator.scala:941) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1429) > at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62) > at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53) > at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105) > at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49) > at scala.collection.TraversableOnce.to(TraversableOnce.scala:315) > at scala.collection.TraversableOnce.to$(TraversableOnce.scala:313) > at scala.collection.AbstractIterator.to(Iterator.scala:1429) > at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:307) > at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:307) > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1429) > at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:294) > at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:288) > at scala.collection.AbstractIterator.toArray(Iterator.scala:1429) > at > org.apache.spark.sql.Dataset.$anonfun$collectAsArrowToR$3(Dataset.scala:3589) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) > at org.apache.spark.scheduler.Task.doRunTask(Task.scala:144) > at org.apache.spark.scheduler.Task.run(Task.scala:117) > at > org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$9(Executor.scala:639) > at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1559) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:642) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > Driver stacktrace: > {code} > > > > > > -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org