[ https://issues.apache.org/jira/browse/SPARK-33277?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Apache Spark reassigned SPARK-33277: ------------------------------------ Assignee: (was: Apache Spark) > Python/Pandas UDF right after off-heap vectorized reader could cause executor > crash. > ------------------------------------------------------------------------------------ > > Key: SPARK-33277 > URL: https://issues.apache.org/jira/browse/SPARK-33277 > Project: Spark > Issue Type: Bug > Components: PySpark, SQL > Affects Versions: 3.0.1 > Reporter: Takuya Ueshin > Priority: Major > > Python/Pandas UDF right after off-heap vectorized reader could cause executor > crash. > E.g.,: > {code:java} > spark.range(0, 100000, 1, 1).write.parquet(path) > spark.conf.set("spark.sql.columnVector.offheap.enabled", True) > def f(x): > return 0 > fUdf = udf(f, LongType()) > spark.read.parquet(path).select(fUdf('id')).head() > {code} > This is because, the Python evaluation consumes the parent iterator in a > separate thread and it consumes more data from the parent even after the task > ends and the parent is closed. If an off-heap column vector exists in the > parent iterator, it could cause segmentation fault which crashes the executor. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org