[ 
https://issues.apache.org/jira/browse/SPARK-33277?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-33277:
------------------------------------

    Assignee:     (was: Apache Spark)

> Python/Pandas UDF right after off-heap vectorized reader could cause executor 
> crash.
> ------------------------------------------------------------------------------------
>
>                 Key: SPARK-33277
>                 URL: https://issues.apache.org/jira/browse/SPARK-33277
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark, SQL
>    Affects Versions: 3.0.1
>            Reporter: Takuya Ueshin
>            Priority: Major
>
> Python/Pandas UDF right after off-heap vectorized reader could cause executor 
> crash.
> E.g.,:
> {code:java}
> spark.range(0, 100000, 1, 1).write.parquet(path)
> spark.conf.set("spark.sql.columnVector.offheap.enabled", True)
> def f(x):
>     return 0
> fUdf = udf(f, LongType())
> spark.read.parquet(path).select(fUdf('id')).head()
> {code}
> This is because, the Python evaluation consumes the parent iterator in a 
> separate thread and it consumes more data from the parent even after the task 
> ends and the parent is closed. If an off-heap column vector exists in the 
> parent iterator, it could cause segmentation fault which crashes the executor.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to