[ https://issues.apache.org/jira/browse/SPARK-33539?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17245459#comment-17245459 ]
Allison Wang commented on SPARK-33539: -------------------------------------- Hi [~srowen], this is to breakdown more than 1000+ error messages into smaller tasks for each component and module so that each task contains a reasonable amount of exceptions to work with. > Standardize exception messages in Spark > --------------------------------------- > > Key: SPARK-33539 > URL: https://issues.apache.org/jira/browse/SPARK-33539 > Project: Spark > Issue Type: Improvement > Components: Spark Core, SQL > Affects Versions: 3.1.0 > Reporter: Allison Wang > Priority: Major > > In the SPIP: Standardize Exception Messages in Spark, there are three major > improvements proposed: > # Group error messages in dedicated files. > # Establish an error message guideline for developers. > # Improve error message quality. > The first step is to centralize error messages for each component into its > own dedicated file(s). This can help with auditing error messages and > subsequent tasks to establish a guideline and improve message quality in the > future. > A general rule of thumb for grouping exceptions: > * AnalysisException => QueryCompilationErrors > * SparkException, RuntimeException(UnsupportedOperationException, > IllegalStateException...) => QueryExecutionErrors > Here is an example RP to group all `AnalysisExcpetion` in Analyzer into > QueryCompilationErrors: > [SPARK-32670|https://github.com/apache/spark/pull/29497] > Please see the > [SPIP|https://docs.google.com/document/d/1XGj1o3xAFh8BA7RCn3DtwIPC6--hIFOaNUNSlpaOIZs/edit?usp=sharing] > for more details. > Exceptions per component: > ||component||exception|| > |sql|714| > |core|334| > |mllib|161| > |streaming|43| > |resource-managers|42| > |external|35| > |examples|20| > |mllib-local|10| > |graphx|6| > |repl|5| > |hadoop-cloud|1| -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org