[ 
https://issues.apache.org/jira/browse/SPARK-34751?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Takeshi Yamamuro updated SPARK-34751:
-------------------------------------
    Target Version/s:   (was: 2.4.3)

> Parquet with invalid chars on column name reads double as null when a clean 
> schema is applied
> ---------------------------------------------------------------------------------------------
>
>                 Key: SPARK-34751
>                 URL: https://issues.apache.org/jira/browse/SPARK-34751
>             Project: Spark
>          Issue Type: Bug
>          Components: Input/Output
>    Affects Versions: 2.4.3
>         Environment: Pyspark 2.4.3
> AWS Glue Dev Endpoint EMR
>            Reporter: Nivas Umapathy
>            Priority: Major
>             Fix For: 2.4.8
>
>         Attachments: invalid_columns_double.parquet
>
>
> I have a parquet file that has data with invalid column names on it. 
> [#Reference](https://issues.apache.org/jira/browse/SPARK-27442)  Here is the 
> file attached with this ticket.
> I tried to load this file with 
> {{df = glue_context.read.parquet('invalid_columns_double.parquet')}}
> {{df = df.withColumnRenamed('COL 1', 'COL_1')}}
> {{df = df.withColumnRenamed('COL,2', 'COL_2')}}
> {{df = df.withColumnRenamed('COL;3', 'COL_3') }}
> and so on.
> Now if i call
> {{df.show()}}
> it throws this exception that is still pointing to the old column name.
>  {{pyspark.sql.utils.AnalysisException: 'Attribute name "COL 1" contains 
> invalid character(s) among " ,;{}()}}
> {{n}}
>  {{t=". Please use alias to rename it.;'}}
>  
> When i read about it in some blogs, there was suggestion to re-read the same 
> parquet with new schema applied. So i did 
> {{df = 
> glue_context.read.schema(df.schema).parquet(}}{{'invalid_columns_double.parquet')}}
>  
> and it works, but all the data in the dataframe are null. The same works for 
> String datatypes
>  



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to