[ https://issues.apache.org/jira/browse/SPARK-27991?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Apache Spark reassigned SPARK-27991: ------------------------------------ Assignee: (was: Apache Spark) > ShuffleBlockFetcherIterator should take Netty constant-factor overheads into > account when limiting number of simultaneous block fetches > --------------------------------------------------------------------------------------------------------------------------------------- > > Key: SPARK-27991 > URL: https://issues.apache.org/jira/browse/SPARK-27991 > Project: Spark > Issue Type: Bug > Components: Shuffle, Spark Core > Affects Versions: 2.4.0 > Reporter: Josh Rosen > Priority: Major > > ShuffleBlockFetcherIterator has logic to limit the number of simultaneous > block fetches. By default, this logic tries to keep the number of outstanding > block fetches [beneath a data size > limit|https://github.com/apache/spark/blob/v2.4.3/core/src/main/scala/org/apache/spark/storage/ShuffleBlockFetcherIterator.scala#L274] > ({{maxBytesInFlight}}). However, this limiting does not take fixed overheads > into account: even though a remote block might be, say, 4KB, there are > certain fixed-size internal overheads due to Netty buffer sizes which may > cause the actual space requirements to be larger. > As a result, if a map stage produces a huge number of extremely tiny blocks > then we may see errors like > {code:java} > org.apache.spark.shuffle.FetchFailedException: failed to allocate 16777216 > byte(s) of direct memory (used: 39325794304, max: 39325794304) > at > org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:554) > at > org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:485) > [...] > Caused by: io.netty.util.internal.OutOfDirectMemoryError: failed to allocate > 16777216 byte(s) of direct memory (used: 39325794304, max: 39325794304) > at > io.netty.util.internal.PlatformDependent.incrementMemoryCounter(PlatformDependent.java:640) > at > io.netty.util.internal.PlatformDependent.allocateDirectNoCleaner(PlatformDependent.java:594) > at io.netty.buffer.PoolArena$DirectArena.allocateDirect(PoolArena.java:764) > at io.netty.buffer.PoolArena$DirectArena.newChunk(PoolArena.java:740) > at io.netty.buffer.PoolArena.allocateNormal(PoolArena.java:244) > at io.netty.buffer.PoolArena.allocate(PoolArena.java:226) > at io.netty.buffer.PoolArena.allocate(PoolArena.java:146) > at > io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:324) > [...]{code} > SPARK-24989 is another report of this problem (but with a different proposed > fix). > This problem can currently be mitigated by setting > {{spark.reducer.maxReqsInFlight}} to some some non-IntMax value (SPARK-6166), > but this additional manual configuration step is cumbersome. > Instead, I think that Spark should take these fixed overheads into account in > the {{maxBytesInFlight}} calculation: instead of using blocks' actual sizes, > use {{Math.min(blockSize, minimumNettyBufferSize)}}. There might be some > tricky details involved to make this work on all configurations (e.g. to use > a different minimum when direct buffers are disabled, etc.), but I think the > core idea behind the fix is pretty simple. > This will improve Spark's stability and removes configuration / tuning burden > from end users. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org