[ 
https://issues.apache.org/jira/browse/SPARK-34794?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17338411#comment-17338411
 ] 

Apache Spark commented on SPARK-34794:
--------------------------------------

User 'maropu' has created a pull request for this issue:
https://github.com/apache/spark/pull/32424

> Nested higher-order functions broken in DSL
> -------------------------------------------
>
>                 Key: SPARK-34794
>                 URL: https://issues.apache.org/jira/browse/SPARK-34794
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 3.1.1, 3.2.0
>         Environment: 3.1.1
>            Reporter: Daniel Solow
>            Priority: Major
>              Labels: correctness
>
> In Spark 3, if I have:
> {code:java}
> val df = Seq(
>     (Seq(1,2,3), Seq("a", "b", "c"))
> ).toDF("numbers", "letters")
> {code}
> and I want to take the cross product of these two arrays, I can do the 
> following in SQL:
> {code:java}
> df.selectExpr("""
>     FLATTEN(
>         TRANSFORM(
>             numbers,
>             number -> TRANSFORM(
>                 letters,
>                 letter -> (number AS number, letter AS letter)
>             )
>         )
>     ) AS zipped
> """).show(false)
> +------------------------------------------------------------------------+
> |zipped                                                                  |
> +------------------------------------------------------------------------+
> |[{1, a}, {1, b}, {1, c}, {2, a}, {2, b}, {2, c}, {3, a}, {3, b}, {3, c}]|
> +------------------------------------------------------------------------+
> {code}
> This works fine. But when I try the equivalent using the scala DSL, the 
> result is wrong:
> {code:java}
> df.select(
>     f.flatten(
>         f.transform(
>             $"numbers",
>             (number: Column) => { f.transform(
>                 $"letters",
>                 (letter: Column) => { f.struct(
>                     number.as("number"),
>                     letter.as("letter")
>                 ) }
>             ) }
>         )
>     ).as("zipped")
> ).show(10, false)
> +------------------------------------------------------------------------+
> |zipped                                                                  |
> +------------------------------------------------------------------------+
> |[{a, a}, {b, b}, {c, c}, {a, a}, {b, b}, {c, c}, {a, a}, {b, b}, {c, c}]|
> +------------------------------------------------------------------------+
> {code}
> Note that the numbers are not included in the output. The explain for this 
> second version is:
> {code:java}
> == Parsed Logical Plan ==
> 'Project [flatten(transform('numbers, lambdafunction(transform('letters, 
> lambdafunction(struct(NamePlaceholder, lambda 'x AS number#442, 
> NamePlaceholder, lambda 'x AS letter#443), lambda 'x, false)), lambda 'x, 
> false))) AS zipped#444]
> +- Project [_1#303 AS numbers#308, _2#304 AS letters#309]
>    +- LocalRelation [_1#303, _2#304]
> == Analyzed Logical Plan ==
> zipped: array<struct<number:string,letter:string>>
> Project [flatten(transform(numbers#308, lambdafunction(transform(letters#309, 
> lambdafunction(struct(number, lambda x#446, letter, lambda x#446), lambda 
> x#446, false)), lambda x#445, false))) AS zipped#444]
> +- Project [_1#303 AS numbers#308, _2#304 AS letters#309]
>    +- LocalRelation [_1#303, _2#304]
> == Optimized Logical Plan ==
> LocalRelation [zipped#444]
> == Physical Plan ==
> LocalTableScan [zipped#444]
> {code}
> Seems like variable name x is hardcoded. And sure enough: 
> https://github.com/apache/spark/blob/v3.1.1/sql/core/src/main/scala/org/apache/spark/sql/functions.scala#L3647



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to