[ https://issues.apache.org/jira/browse/SPARK-35935?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Max Gekk updated SPARK-35935: ----------------------------- Affects Version/s: 3.0.4 3.1.3 > REPAIR TABLE fails on table refreshing > -------------------------------------- > > Key: SPARK-35935 > URL: https://issues.apache.org/jira/browse/SPARK-35935 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 3.2.0, 3.1.3, 3.0.4 > Reporter: Max Gekk > Assignee: Max Gekk > Priority: Major > Fix For: 3.2.0 > > > MSCK REPAIR TABLE can fail while table recovering with the exception: > {code:java} > Error in SQL statement: AnalysisException: Incompatible format detected. > ... > at > org.apache.spark.sql.execution.datasources.FindDataSourceTable.org$apache$spark$sql$execution$datasources$FindDataSourceTable$$verifyNonDeltaTable(DataSourceStrategy.scala:297) > at > org.apache.spark.sql.execution.datasources.FindDataSourceTable$$anonfun$apply0$1.applyOrElse(DataSourceStrategy.scala:378) > at > org.apache.spark.sql.execution.datasources.FindDataSourceTable$$anonfun$apply0$1.applyOrElse(DataSourceStrategy.scala:342) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDownWithPruning$2(AnalysisHelper.scala:170) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:86) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDownWithPruning$1(AnalysisHelper.scala:170) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:316) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDownWithPruning(AnalysisHelper.scala:168) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDownWithPruning$(AnalysisHelper.scala:164) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsDownWithPruning(LogicalPlan.scala:30) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDownWithPruning$4(AnalysisHelper.scala:175) > at > org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1093) > at > org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1092) > at > org.apache.spark.sql.catalyst.plans.logical.UnaryNode.mapChildren(LogicalPlan.scala:187) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsDownWithPruning$1(AnalysisHelper.scala:175) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:316) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDownWithPruning(AnalysisHelper.scala:168) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsDownWithPruning$(AnalysisHelper.scala:164) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsDownWithPruning(LogicalPlan.scala:30) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsWithPruning(AnalysisHelper.scala:98) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsWithPruning$(AnalysisHelper.scala:95) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsWithPruning(LogicalPlan.scala:30) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperators(AnalysisHelper.scala:75) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperators$(AnalysisHelper.scala:74) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:30) > at > org.apache.spark.sql.execution.datasources.FindDataSourceTable.apply0(DataSourceStrategy.scala:342) > at > org.apache.spark.sql.execution.datasources.FindDataSourceTable.apply(DataSourceStrategy.scala:336) > at > org.apache.spark.sql.execution.datasources.FindDataSourceTable.apply(DataSourceStrategy.scala:248) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$3(RuleExecutor.scala:221) > at > com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:221) > at > scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) > at > scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) > at scala.collection.immutable.List.foldLeft(List.scala:89) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:218) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:210) > at scala.collection.immutable.List.foreach(List.scala:392) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:210) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:251) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:245) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:207) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:188) > at > org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:109) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:188) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:228) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:323) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:227) > at > org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:96) > at > com.databricks.spark.util.FrameProfiler$.record(FrameProfiler.scala:80) > at > org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:134) > at > org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:178) > at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:852) > at > org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:178) > at > org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:97) > at > org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:94) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:86) > at org.apache.spark.sql.Dataset$.$anonfun$ofRows$1(Dataset.scala:94) > at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:852) > at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:92) > at org.apache.spark.sql.SparkSession.table(SparkSession.scala:668) > at > org.apache.spark.sql.internal.CatalogImpl.refreshTable(CatalogImpl.scala:548) > at > org.apache.spark.sql.execution.command.AlterTableRecoverPartitionsCommand.run(ddl.scala:714) > at > org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:79) > {code} > The same command worked on previous Spark versions. -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org