[ https://issues.apache.org/jira/browse/SPARK-18105?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17421969#comment-17421969 ]
Vladimir Prus commented on SPARK-18105: --------------------------------------- FYI, we recently started to get a lot of such errors; they appear to be correlated with increased load and increased spot termination in AWS. So as an experiment, I've disabled executor decommission, and the errors all disappeared. Specifically, I set these options: {noformat} storage.decommission.enabled: false storage.decommission.rddBlocks.enabled: false storage.decommission.shuffleBlocks.enabled: false{noformat} It is of course not a perfect set of options for production, but maybe will be a hint at the problem. I am using a recent build from branch-3.1, specifically from commit e1fc62de8e05. > LZ4 failed to decompress a stream of shuffled data > -------------------------------------------------- > > Key: SPARK-18105 > URL: https://issues.apache.org/jira/browse/SPARK-18105 > Project: Spark > Issue Type: Bug > Components: Spark Core > Affects Versions: 3.0.1, 3.1.1 > Reporter: Davies Liu > Priority: Major > Attachments: TestWeightedGraph.java > > > When lz4 is used to compress the shuffle files, it may fail to decompress it > as "stream is corrupt" > {code} > Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: > Task 92 in stage 5.0 failed 4 times, most recent failure: Lost task 92.3 in > stage 5.0 (TID 16616, 10.0.27.18): java.io.IOException: Stream is corrupted > at > org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:220) > at > org.apache.spark.io.LZ4BlockInputStream.available(LZ4BlockInputStream.java:109) > at java.io.BufferedInputStream.read(BufferedInputStream.java:353) > at java.io.DataInputStream.read(DataInputStream.java:149) > at com.google.common.io.ByteStreams.read(ByteStreams.java:828) > at com.google.common.io.ByteStreams.readFully(ByteStreams.java:695) > at > org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:127) > at > org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:110) > at scala.collection.Iterator$$anon$13.next(Iterator.scala:372) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at > org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:30) > at > org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.sort_addToSorter$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370) > at > org.apache.spark.sql.execution.datasources.DynamicPartitionWriterContainer.writeRows(WriterContainer.scala:397) > at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143) > at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) > at org.apache.spark.scheduler.Task.run(Task.scala:86) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > {code} > https://github.com/jpountz/lz4-java/issues/89 -- This message was sent by Atlassian Jira (v8.3.4#803005) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org