[ 
https://issues.apache.org/jira/browse/SPARK-1391?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Imran Rashid updated SPARK-1391:
--------------------------------
    Attachment: BlockLimitDesign.pdf

design doc

> BlockManager cannot transfer blocks larger than 2G in size
> ----------------------------------------------------------
>
>                 Key: SPARK-1391
>                 URL: https://issues.apache.org/jira/browse/SPARK-1391
>             Project: Spark
>          Issue Type: Improvement
>          Components: Block Manager, Shuffle
>    Affects Versions: 1.0.0
>            Reporter: Shivaram Venkataraman
>         Attachments: BlockLimitDesign.pdf, SPARK-1391.diff
>
>
> If a task tries to remotely access a cached RDD block, I get an exception 
> when the block size is > 2G. The exception is pasted below.
> Memory capacities are huge these days (> 60G), and many workflows depend on 
> having large blocks in memory, so it would be good to fix this bug.
> I don't know if the same thing happens on shuffles if one transfer (from 
> mapper to reducer) is > 2G.
> {noformat}
> 14/04/02 02:33:10 ERROR storage.BlockManagerWorker: Exception handling buffer 
> message
> java.lang.ArrayIndexOutOfBoundsException
>         at 
> it.unimi.dsi.fastutil.io.FastByteArrayOutputStream.write(FastByteArrayOutputStream.java:96)
>         at 
> it.unimi.dsi.fastutil.io.FastBufferedOutputStream.dumpBuffer(FastBufferedOutputStream.java:134)
>         at 
> it.unimi.dsi.fastutil.io.FastBufferedOutputStream.write(FastBufferedOutputStream.java:164)
>         at 
> java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1876)
>         at 
> java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1785)
>         at 
> java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1188)
>         at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
>         at 
> org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:38)
>         at 
> org.apache.spark.serializer.SerializationStream$class.writeAll(Serializer.scala:93)
>         at 
> org.apache.spark.serializer.JavaSerializationStream.writeAll(JavaSerializer.scala:26)
>         at 
> org.apache.spark.storage.BlockManager.dataSerializeStream(BlockManager.scala:913)
>         at 
> org.apache.spark.storage.BlockManager.dataSerialize(BlockManager.scala:922)
>         at 
> org.apache.spark.storage.MemoryStore.getBytes(MemoryStore.scala:102)
>         at 
> org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:348)
>         at 
> org.apache.spark.storage.BlockManager.getLocalBytes(BlockManager.scala:323)
>         at 
> org.apache.spark.storage.BlockManagerWorker.getBlock(BlockManagerWorker.scala:90)
>         at 
> org.apache.spark.storage.BlockManagerWorker.processBlockMessage(BlockManagerWorker.scala:69)
>         at 
> org.apache.spark.storage.BlockManagerWorker$$anonfun$2.apply(BlockManagerWorker.scala:44)
>         at 
> org.apache.spark.storage.BlockManagerWorker$$anonfun$2.apply(BlockManagerWorker.scala:44)
>         at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>         at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
>         at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>         at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>         at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>         at 
> org.apache.spark.storage.BlockMessageArray.foreach(BlockMessageArray.scala:28)
>         at 
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
>         at 
> org.apache.spark.storage.BlockMessageArray.map(BlockMessageArray.scala:28)
>         at 
> org.apache.spark.storage.BlockManagerWorker.onBlockMessageReceive(BlockManagerWorker.scala:44)
>         at 
> org.apache.spark.storage.BlockManagerWorker$$anonfun$1.apply(BlockManagerWorker.scala:34)
>         at 
> org.apache.spark.storage.BlockManagerWorker$$anonfun$1.apply(BlockManagerWorker.scala:34)
>         at 
> org.apache.spark.network.ConnectionManager.org$apache$spark$network$ConnectionManager$$handleMessage(ConnectionManager.scala:661)
>         at 
> org.apache.spark.network.ConnectionManager$$anon$9.run(ConnectionManager.scala:503)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>         at java.lang.Thread.run(Thread.java:744)
> {noformat}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to