Devesh Parekh created SPARK-6162:
------------------------------------
Summary: Handle missing values in GBM
Key: SPARK-6162
URL: https://issues.apache.org/jira/browse/SPARK-6162
Project: Spark
Issue Type: Improvement
Components: MLlib
Affects Versions: 1.2.1
Reporter: Devesh Parekh
We build a lot of predictive models over data combined from multiple sources,
where some entries may not have all sources of data and so some values are
missing in each feature vector. Another place this might come up is if you have
features from slightly heterogeneous items (or items composed of heterogeneous
subcomponents) that share many features in common but may have extra features
for different types, and you don't want to manually train models for every
different type.
R's GBM library, which is what we are currently using, deals with this type of
data nicely by making "missing" nodes in the decision tree (a surrogate split)
for features that can have missing values. We'd like to do the same with MLLib,
but LabeledPoint would need to support missing values, and GradientBoostedTrees
would need to be modified to deal with them.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]