[ https://issues.apache.org/jira/browse/SPARK-38285?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17501363#comment-17501363 ]
Alessandro Bacchini commented on SPARK-38285: --------------------------------------------- Any news on this issue? The code freeze for release 3.3 will happen on March 15th. This bug is probably present even in the current master branch (I have not tested it on master), so there is the risk that version 3.3 could be released without the fix. > ClassCastException: GenericArrayData cannot be cast to InternalRow > ------------------------------------------------------------------ > > Key: SPARK-38285 > URL: https://issues.apache.org/jira/browse/SPARK-38285 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 3.2.1 > Reporter: Alessandro Bacchini > Priority: Major > > The following code with Spark 3.2.1 raises an exception: > {code:python} > import pyspark.sql.functions as F > from pyspark.sql.types import StructType, StructField, ArrayType, StringType > t = StructType([ > StructField('o', > ArrayType( > StructType([ > StructField('s', StringType(), False), > StructField('b', ArrayType( > StructType([ > StructField('e', StringType(), False) > ]), > True), > False) > ]), > True), > False)]) > value = { > "o": [ > { > "s": "string1", > "b": [ > { > "e": "string2" > }, > { > "e": "string3" > } > ] > }, > { > "s": "string4", > "b": [ > { > "e": "string5" > }, > { > "e": "string6" > }, > { > "e": "string7" > } > ] > } > ] > } > df = ( > spark.createDataFrame([value], schema=t) > .select(F.explode("o").alias("eo")) > .select("eo.b.e") > ) > df.show() > {code} > The exception message is: > {code} > java.lang.ClassCastException: > org.apache.spark.sql.catalyst.util.GenericArrayData cannot be cast to > org.apache.spark.sql.catalyst.InternalRow > at > org.apache.spark.sql.catalyst.util.GenericArrayData.getStruct(GenericArrayData.scala:76) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:759) > at > org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:80) > at > org.apache.spark.sql.execution.collect.Collector.$anonfun$processFunc$1(Collector.scala:155) > at > org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75) > at > com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) > at > org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75) > at > com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55) > at org.apache.spark.scheduler.Task.doRunTask(Task.scala:153) > at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:122) > at > com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) > at org.apache.spark.scheduler.Task.run(Task.scala:93) > at > org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:824) > at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1641) > at > org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:827) > at > scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) > at > com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:683) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > {code} > I am using Spark 3.2.1, but I don't know if even Spark 3.3.0 is affected. > Please note that the issue seems to be related to SPARK-37577: I am using the > same DataFrame schema, but this time I have populated it with non empty value. > I think that this is bug because with the following configuration it works as > expected: > {code:python} > spark.conf.set("spark.sql.optimizer.expression.nestedPruning.enabled", False) > spark.conf.set("spark.sql.optimizer.nestedSchemaPruning.enabled", False) > {code} > Update: The provided code is working with Spark 3.1.2 without problems, so it > seems an error due to expression pruning. > The expected result is: > {code} > +---------------------------+ > |e | > +---------------------------+ > |[string2, string3] | > |[string5, string6, string7]| > +---------------------------+ > {code} -- This message was sent by Atlassian Jira (v8.20.1#820001) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org