[ https://issues.apache.org/jira/browse/SPARK-38379?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Dongjoon Hyun updated SPARK-38379: ---------------------------------- Fix Version/s: (was: 3.2.2) > Kubernetes: NoSuchElementException: spark.app.id when using PersistentVolumes > ------------------------------------------------------------------------------ > > Key: SPARK-38379 > URL: https://issues.apache.org/jira/browse/SPARK-38379 > Project: Spark > Issue Type: Bug > Components: Kubernetes > Affects Versions: 3.2.1 > Reporter: Thomas Graves > Assignee: Thomas Graves > Priority: Major > Fix For: 3.3.0 > > > I'm using Spark 3.2.1 on a kubernetes cluster and starting a spark-shell in > client mode. I'm using persistent local volumes to mount nvme under /data in > the executors and on startup the driver always throws the warning below. > using these options: > --conf > spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-local-dir-1.options.claimName=OnDemand > \ > --conf > spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-local-dir-1.options.storageClass=fast-disks > \ > --conf > spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-local-dir-1.options.sizeLimit=500Gi > \ > --conf > spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-local-dir-1.mount.path=/data > \ > --conf > spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-local-dir-1.mount.readOnly=false > > > {code:java} > 22/03/01 20:21:22 WARN ExecutorPodsSnapshotsStoreImpl: Exception when > notifying snapshot subscriber. > java.util.NoSuchElementException: spark.app.id > at org.apache.spark.SparkConf.$anonfun$get$1(SparkConf.scala:245) > at scala.Option.getOrElse(Option.scala:189) > at org.apache.spark.SparkConf.get(SparkConf.scala:245) > at org.apache.spark.SparkConf.getAppId(SparkConf.scala:450) > at > org.apache.spark.deploy.k8s.features.MountVolumesFeatureStep.$anonfun$constructVolumes$4(MountVolumesFeatureStep.scala:88) > at > scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) > at scala.collection.Iterator.foreach(Iterator.scala:943) > at scala.collection.Iterator.foreach$(Iterator.scala:943) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1431) > at scala.collection.IterableLike.foreach(IterableLike.scala:74) > at scala.collection.IterableLike.foreach$(IterableLike.scala:73) > at scala.collection.AbstractIterable.foreach(Iterable.scala:56) > at scala.collection.TraversableLike.map(TraversableLike.scala:286) > at scala.collection.TraversableLike.map$(TraversableLike.scala:279) > at scala.collection.AbstractTraversable.map(Traversable.scala:108) > at > org.apache.spark.deploy.k8s.features.MountVolumesFeatureStep.constructVolumes(MountVolumesFeatureStep.scala:57) > at > org.apache.spark.deploy.k8s.features.MountVolumesFeatureStep.configurePod(MountVolumesFeatureStep.scala:34) > at > org.apache.spark.scheduler.cluster.k8s.KubernetesExecutorBuilder.$anonfun$buildFromFeatures$4(KubernetesExecutorBuilder.scala:64) > at > scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) > at > scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) > at scala.collection.immutable.List.foldLeft(List.scala:91) > at > org.apache.spark.scheduler.cluster.k8s.KubernetesExecutorBuilder.buildFromFeatures(KubernetesExecutorBuilder.scala:63) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsAllocator.$anonfun$requestNewExecutors$1(ExecutorPodsAllocator.scala:391) > at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:158) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsAllocator.requestNewExecutors(ExecutorPodsAllocator.scala:382) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsAllocator.$anonfun$onNewSnapshots$36(ExecutorPodsAllocator.scala:346) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsAllocator.$anonfun$onNewSnapshots$36$adapted(ExecutorPodsAllocator.scala:339) > at > scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) > at > scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsAllocator.onNewSnapshots(ExecutorPodsAllocator.scala:339) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsAllocator.$anonfun$start$3(ExecutorPodsAllocator.scala:117) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsAllocator.$anonfun$start$3$adapted(ExecutorPodsAllocator.scala:117) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsSnapshotsStoreImpl$SnapshotsSubscriber.org$apache$spark$scheduler$cluster$k8s$ExecutorPodsSnapshotsStoreImpl$SnapshotsSubscriber$$processSnapshotsInternal(ExecutorPodsSnapshotsStoreImpl.scala:138) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsSnapshotsStoreImpl$SnapshotsSubscriber.processSnapshots(ExecutorPodsSnapshotsStoreImpl.scala:126) > at > org.apache.spark.scheduler.cluster.k8s.ExecutorPodsSnapshotsStoreImpl.$anonfun$addSubscriber$1(ExecutorPodsSnapshotsStoreImpl.scala:81) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > {code} > -- This message was sent by Atlassian Jira (v8.20.1#820001) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org