[ https://issues.apache.org/jira/browse/SPARK-38884?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17522885#comment-17522885 ]
Bruce Robbins commented on SPARK-38884: --------------------------------------- {quote}what`s self-contained reproducer?{quote} [~chopperChen] A self-contained reproducer would be like the reproduction steps provided in the descriptions of SPARK-38717, SPARK-38655, SPARK-38614. The steps include everything needed to reproduce, _including sample data_, and usually (but not always) given as a set of commands a Spark dev can just cut-and-paste into {{spark-shell}}, {{pyspark}}, or {{spark-sql}}. > java.util.NoSuchElementException: key not found: numPartitions > -------------------------------------------------------------- > > Key: SPARK-38884 > URL: https://issues.apache.org/jira/browse/SPARK-38884 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 3.0.1 > Environment: hadoop 3.1.1 > spark 3.0.1 > Reporter: chopperChen > Priority: Major > > When running function spark.sql("sql").isEmpty, the logs print > {*}_java.util.NoSuchElementException: key not found: numPartitions_{*}. > My sql like: > > {code:java} > // hr is a partition column > select * from (select col1, '24' as hr from table1 > union all select col1, '2' as hr from table2 > union all select col1, hr from table3) df1 > inner join (select col1, '24' as hr from table4 > union all select col1, '2' as hr from table5 > union all select col1, hr from table6) df2 > on df1.col1=df2.col1 > {code} > > *exception:* > Caused by: java.util.NoSuchElementException: key not found: numPartitions > at scala.collection.MapLike.default(MapLike.scala:235) > at scala.collection.MapLike.default$(MapLike.scala:234) > at scala.collection.AbstractMap.default(Map.scala:63) > at scala.collection.MapLike.apply(MapLike.scala:144) > at scala.collection.MapLike.apply$(MapLike.scala:143) > at scala.collection.AbstractMap.apply(Map.scala:63) > at > org.apache.spark.sql.execution.FileSourceScanExec.$anonfun$sendDriverMetrics$1(DataSourceScanExec.scala:197) > at > org.apache.spark.sql.execution.FileSourceScanExec.$anonfun$sendDriverMetrics$1$adapted(DataSourceScanExec.scala:197) > at scala.collection.mutable.HashMap.$anonfun$foreach$1(HashMap.scala:149) > at scala.collection.mutable.HashTable.foreachEntry(HashTable.scala:237) > at scala.collection.mutable.HashTable.foreachEntry$(HashTable.scala:230) > at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:44) > at scala.collection.mutable.HashMap.foreach(HashMap.scala:149) > at > org.apache.spark.sql.execution.FileSourceScanExec.sendDriverMetrics(DataSourceScanExec.scala:197) > at > org.apache.spark.sql.execution.FileSourceScanExec.inputRDD$lzycompute(DataSourceScanExec.scala:407) > at > org.apache.spark.sql.execution.FileSourceScanExec.inputRDD(DataSourceScanExec.scala:390) > at > org.apache.spark.sql.execution.FileSourceScanExec.doExecuteColumnar(DataSourceScanExec.scala:485) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$executeColumnar$1(SparkPlan.scala:202) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210) > at > org.apache.spark.sql.execution.SparkPlan.executeColumnar(SparkPlan.scala:198) > at > org.apache.spark.sql.execution.InputAdapter.doExecuteColumnar(WholeStageCodegenExec.scala:519) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$executeColumnar$1(SparkPlan.scala:202) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210) > at > org.apache.spark.sql.execution.SparkPlan.executeColumnar(SparkPlan.scala:198) > at > org.apache.spark.sql.execution.ColumnarToRowExec.inputRDDs(Columnar.scala:196) > at > org.apache.spark.sql.execution.FilterExec.inputRDDs(basicPhysicalOperators.scala:133) > at > org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:47) > at > org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:720) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210) > at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171) > at > org.apache.spark.sql.execution.UnionExec.$anonfun$doExecute$5(basicPhysicalOperators.scala:644) > at > scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) > at > scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) > at > scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) > at scala.collection.TraversableLike.map(TraversableLike.scala:238) > at scala.collection.TraversableLike.map$(TraversableLike.scala:231) > at scala.collection.AbstractTraversable.map(Traversable.scala:108) > at > org.apache.spark.sql.execution.UnionExec.doExecute(basicPhysicalOperators.scala:644) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210) > at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171) > at > org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525) > at > org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453) > at > org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452) > at > org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496) > at > org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.inputRDDs(BroadcastHashJoinExec.scala:74) > at > org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:47) > at > org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.inputRDDs(BroadcastHashJoinExec.scala:74) > at > org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:47) > at > org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.inputRDDs(BroadcastHashJoinExec.scala:74) > at > org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:47) > at > org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.inputRDDs(BroadcastHashJoinExec.scala:74) > at > org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:47) > at > org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:720) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175) > at > org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210) > at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171) > at > org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD$lzycompute(ShuffleExchangeExec.scala:106) > at > org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD(ShuffleExchangeExec.scala:106) > at > org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.shuffleDependency$lzycompute(ShuffleExchangeExec.scala:139) > at > org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.shuffleDependency(ShuffleExchangeExec.scala:137) > at > org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.$anonfun$doExecute$1(ShuffleExchangeExec.scala:154) > at > org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) -- This message was sent by Atlassian Jira (v8.20.1#820001) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org