[ 
https://issues.apache.org/jira/browse/SPARK-24815?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17553867#comment-17553867
 ] 

Ramiz Mehran edited comment on SPARK-24815 at 6/14/22 3:05 AM:
---------------------------------------------------------------

Guys, is this thread still alive?

I think dynamic scaling for SSS should be taken from spark-streaming itself. 
The logic of "processing/batch duration ratio" makes sense and removes any 
other dependency from the calculation. Also, there should be a moving average 
to calculate and this moving average batch count can be configurable.


was (Author: JIRAUSER290918):
Guys, is this thread still alive?

I think SSS for structure-streaming should be taken from spark-streaming 
itself. The logic of "processing/batch duration ratio" makes sense and removes 
any other dependency from the calculation. Also, there should be a moving 
average to calculate and this moving average batch count can be configurable.

> Structured Streaming should support dynamic allocation
> ------------------------------------------------------
>
>                 Key: SPARK-24815
>                 URL: https://issues.apache.org/jira/browse/SPARK-24815
>             Project: Spark
>          Issue Type: Improvement
>          Components: Scheduler, Spark Core, Structured Streaming
>    Affects Versions: 2.3.1
>            Reporter: Karthik Palaniappan
>            Priority: Minor
>
> For batch jobs, dynamic allocation is very useful for adding and removing 
> containers to match the actual workload. On multi-tenant clusters, it ensures 
> that a Spark job is taking no more resources than necessary. In cloud 
> environments, it enables autoscaling.
> However, if you set spark.dynamicAllocation.enabled=true and run a structured 
> streaming job, the batch dynamic allocation algorithm kicks in. It requests 
> more executors if the task backlog is a certain size, and removes executors 
> if they idle for a certain period of time.
> Quick thoughts:
> 1) Dynamic allocation should be pluggable, rather than hardcoded to a 
> particular implementation in SparkContext.scala (this should be a separate 
> JIRA).
> 2) We should make a structured streaming algorithm that's separate from the 
> batch algorithm. Eventually, continuous processing might need its own 
> algorithm.
> 3) Spark should print a warning if you run a structured streaming job when 
> Core's dynamic allocation is enabled



--
This message was sent by Atlassian Jira
(v8.20.7#820007)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to