[ https://issues.apache.org/jira/browse/SPARK-39845?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Hyukjin Kwon updated SPARK-39845: --------------------------------- Priority: Major (was: Critical) > 0.0 and -0.0 are not consistent in set operations > -------------------------------------------------- > > Key: SPARK-39845 > URL: https://issues.apache.org/jira/browse/SPARK-39845 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 3.2.1 > Reporter: Navin Kumar > Priority: Major > > This is a continuation of the issue described in SPARK-32110. > When using Array set-based functions {{array_union}}, {{array_intersect}}, > {{array_except}} and {{arrays_overlap}}, {{0.0}} and {{-0.0}} have > inconsistent behavior. > When parsed, {{-0.0}} is normalized to {{0.0}}. Therefore if I use > {{array_union}} for example with these values directly, {{array(-0.0)}} > becomes {{array(0.0)}}. See the example below using {{array_union}}: > {code:java} > scala> val df = spark.sql("SELECT array_union(array(0.0), array(-0.0))") > df: org.apache.spark.sql.DataFrame = [array_union(array(0.0), array(0.0)): > array<decimal(1,1)>] > scala> df.collect() > res2: Array[org.apache.spark.sql.Row] = Array([WrappedArray(0.0)]) > {code} > In this case, {{0.0}} and {{-0.0}} are considered equal and the union of the > arrays produces a single value: {{0.0}}. > However, if I try this operation using a constructed dataframe, these values > are not equal, and the result is an array with both {{0.0}} and {{-0.0}}. > {code:java} > scala> val df = List((Array(0.0), Array(-0.0))).toDF("a", "b") > df: org.apache.spark.sql.DataFrame = [a: array<double>, b: array<double>] > scala> df.selectExpr("array_union(a, b)").collect() > res3: Array[org.apache.spark.sql.Row] = Array([WrappedArray(0.0, -0.0)]) > {code} > For {{arrays_overlap}}, here is a similar version of that inconsistency: > {code:java} > scala> val df = spark.sql("SELECT arrays_overlap(array(0.0), array(-0.0))") > df: org.apache.spark.sql.DataFrame = [arrays_overlap(array(0.0), array(0.0)): > boolean] > scala> df.collect > res4: Array[org.apache.spark.sql.Row] = Array([true]) > {code} > {code:java} > scala> val df = List((Array(0.0), Array(-0.0))).toDF("a", "b") > df: org.apache.spark.sql.DataFrame = [a: array<double>, b: array<double>] > scala> df.selectExpr("arrays_overlap(a, b)") > res5: org.apache.spark.sql.DataFrame = [arrays_overlap(a, b): boolean] > scala> df.selectExpr("arrays_overlap(a, b)").collect > res6: Array[org.apache.spark.sql.Row] = Array([false]) > {code} > It looks like this is due to the fact that in the constructed dataframe case, > the Double value is hashed by using {{java.lang.Double.doubleToLongBits}}, > which will treat {{0.0}} and {{-0.0} as distinct because of the sign bit. > See here for more information: > https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/util/collection/OpenHashSet.scala#L312-L321 > for > I can also confirm that the same behavior occurs with FloatType and the use > of {{java.lang.Float.floatToIntBits}} -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org