Santosh Pingale created SPARK-39895: ---------------------------------------
Summary: pyspark drop doesn't accept *cols Key: SPARK-39895 URL: https://issues.apache.org/jira/browse/SPARK-39895 Project: Spark Issue Type: Bug Components: PySpark Affects Versions: 3.2.2, 3.3.0, 3.0.3 Reporter: Santosh Pingale Pyspark dataframe drop has following signature: {color:#4c9aff}{{def drop(self, *cols: "ColumnOrName") -> "DataFrame":}}{color} However when we try to pass multiple Column types to drop function it raises TypeError {{each col in the param list should be a string}} *Minimal reproducible example:* {color:#4c9aff}values = [("id_1", 5, 9), ("id_2", 5, 1), ("id_3", 4, 3), ("id_1", 3, 3), ("id_2", 4, 3)]{color} {color:#4c9aff}df = spark.createDataFrame(values, "id string, point int, count int"){color} |– id: string (nullable = true)| |– point: integer (nullable = true)| |– count: integer (nullable = true)| {color:#4c9aff}{{df.drop(df.point, df.count)}}{color} {quote}{color:#505f79}/spark/python/lib/pyspark.zip/pyspark/sql/dataframe.py in drop(self, *cols){color} {color:#505f79}2537 for col in cols:{color} {color:#505f79}2538 if not isinstance(col, str):{color} {color:#505f79}-> 2539 raise TypeError("each col in the param list should be a string"){color} {color:#505f79}2540 jdf = self._jdf.drop(self._jseq(cols)){color} {color:#505f79}2541{color} {color:#505f79}TypeError: each col in the param list should be a string{color} {quote} -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org