[ https://issues.apache.org/jira/browse/SPARK-34788?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17572634#comment-17572634 ]
Dongjoon Hyun commented on SPARK-34788: --------------------------------------- No, what I meant is ensuring enough disk at your underlying node level in HDFS DataNode in your case. For example, K8s has a nice isolate and guarantee (required and limit) in terms of the disk, memory, and CPU. > On the write side, since Spark usually uses iterators to write data into >disk, it's not possible to know the size in advance. > On the read side (the error in this ticket is actually raised when reading a > file), it can be overkill to me if we'd check if the disk is full each time > before reading a file. > Spark throws FileNotFoundException instead of IOException when disk is full > --------------------------------------------------------------------------- > > Key: SPARK-34788 > URL: https://issues.apache.org/jira/browse/SPARK-34788 > Project: Spark > Issue Type: Improvement > Components: Shuffle, Spark Core > Affects Versions: 3.2.0 > Reporter: wuyi > Priority: Major > > When the disk is full, Spark throws FileNotFoundException instead of > IOException with the hint. It's quite a confusing error to users: > {code:java} > 9/03/26 09:03:45 ERROR ShuffleBlockFetcherIterator: Failed to create input > stream from local block > java.io.IOException: Error in reading > FileSegmentManagedBuffer{file=/local_disk0/spark-c2f26f02-2572-4764-815a-cbba65ddb315/executor-b4b76a4c-788c-4cb6-b904-664a883be1aa/blockmgr-36804371-24fe-4131-a3dc-00b7f98f3a3e/11/shuffle_113_1029_0.data, > offset=110254956, length=1875458} > at > org.apache.spark.network.buffer.FileSegmentManagedBuffer.createInputStream(FileSegmentManagedBuffer.java:111) > at > org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:442) > at > org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:64) > at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434) > at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) > at > org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:31) > at > org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2.sort_addToSorter_0$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:622) > at > org.apache.spark.sql.execution.aggregate.SortAggregateExec$$anonfun$doExecute$1$$anonfun$3.apply(SortAggregateExec.scala:98) > at > org.apache.spark.sql.execution.aggregate.SortAggregateExec$$anonfun$doExecute$1$$anonfun$3.apply(SortAggregateExec.scala:95) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndexInternal$1$$anonfun$12.apply(RDD.scala:839) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndexInternal$1$$anonfun$12.apply(RDD.scala:839) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:340) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:304) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:340) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:304) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:340) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:304) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55) > at org.apache.spark.scheduler.Task.doRunTask(Task.scala:139) > at org.apache.spark.scheduler.Task.run(Task.scala:112) > at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$13.apply(Executor.scala:497) > at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1432) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:503) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > Caused by: java.io.FileNotFoundException: > /local_disk0/spark-c2f26f02-2572-4764-815a-cbba65ddb315/executor-b4b76a4c-788c-4cb6-b904-664a883be1aa/blockmgr-36804371-24fe-4131-a3dc-00b7f98f3a3e/11/shuffle_113_1029_0.data > (No such file or directory) > at java.io.FileInputStream.open0(Native Method) > at java.io.FileInputStream.open(FileInputStream.java:195) > at java.io.FileInputStream.<init>(FileInputStream.java:138) > at > org.apache.spark.network.buffer.FileSegmentManagedBuffer.createInputStream(FileSegmentManagedBuffer.java:100) > ... 35 more{code} > (The cause only says the file is not found, but we believe it's highly > possible due to the disk full issue after investigation.) > And there's probably a way to detect the disk full: when we get > `FileNotFoundException`, we try > [http://weblog.janek.org/Archive/2004/12/20/ExceptionWhenWritingToAFu.html] > to see if SyncFailedException throws. If SyncFailedException throws, then we > throw IOException with the disk full hint. -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org