[ https://issues.apache.org/jira/browse/SPARK-39833?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Chao Sun updated SPARK-39833: ----------------------------- Affects Version/s: 3.3.0 > Filtered parquet data frame count() and show() produce inconsistent results > when spark.sql.parquet.filterPushdown is true > ------------------------------------------------------------------------------------------------------------------------- > > Key: SPARK-39833 > URL: https://issues.apache.org/jira/browse/SPARK-39833 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 3.2.1, 3.3.0 > Reporter: Michael Allman > Priority: Major > Labels: correctness > > One of our data scientists discovered a problem wherein a data frame > `.show()` call printed non-empty results, but `.count()` printed 0. I've > narrowed the issue to a small, reproducible test case which exhibits this > aberrant behavior. In pyspark, run the following code: > {code:python} > from pyspark.sql.types import * > parquet_pushdown_bug_df = spark.createDataFrame([{"COL0": int(0)}], > schema=StructType(fields=[StructField("COL0",IntegerType(),True)])) > parquet_pushdown_bug_df.repartition(1).write.mode("overwrite").parquet("parquet_pushdown_bug/col0=0/parquet_pushdown_bug.parquet") > reread_parquet_pushdown_bug_df = spark.read.parquet("parquet_pushdown_bug") > reread_parquet_pushdown_bug_df.filter("col0 = 0").show() > print(reread_parquet_pushdown_bug_df.filter("col0 = 0").count()) > {code} > In my usage, this prints a data frame with 1 row and a count of 0. However, > disabling `spark.sql.parquet.filterPushdown` produces consistent results: > {code:python} > spark.conf.set("spark.sql.parquet.filterPushdown", False) > reread_parquet_pushdown_bug_df.filter("col0 = 0").show() > reread_parquet_pushdown_bug_df.filter("col0 = 0").count() > {code} > This will print the same data frame, however it will print a count of 1. The > key to triggering this bug is not just enabling > `spark.sql.parquet.filterPushdown` (which is enabled by default). The case of > the column in the data frame (before writing) must differ from the case of > the partition column in the file path, i.e. COL0 versus col0 or col0 versus > COL0. -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org