[ 
https://issues.apache.org/jira/browse/SPARK-39833?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Chao Sun updated SPARK-39833:
-----------------------------
    Affects Version/s: 3.3.0

> Filtered parquet data frame count() and show() produce inconsistent results 
> when spark.sql.parquet.filterPushdown is true
> -------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-39833
>                 URL: https://issues.apache.org/jira/browse/SPARK-39833
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 3.2.1, 3.3.0
>            Reporter: Michael Allman
>            Priority: Major
>              Labels: correctness
>
> One of our data scientists discovered a problem wherein a data frame 
> `.show()` call printed non-empty results, but `.count()` printed 0. I've 
> narrowed the issue to a small, reproducible test case which exhibits this 
> aberrant behavior. In pyspark, run the following code:
> {code:python}
> from pyspark.sql.types import *
> parquet_pushdown_bug_df = spark.createDataFrame([{"COL0": int(0)}], 
> schema=StructType(fields=[StructField("COL0",IntegerType(),True)]))
> parquet_pushdown_bug_df.repartition(1).write.mode("overwrite").parquet("parquet_pushdown_bug/col0=0/parquet_pushdown_bug.parquet")
> reread_parquet_pushdown_bug_df = spark.read.parquet("parquet_pushdown_bug")
> reread_parquet_pushdown_bug_df.filter("col0 = 0").show()
> print(reread_parquet_pushdown_bug_df.filter("col0 = 0").count())
> {code}
> In my usage, this prints a data frame with 1 row and a count of 0. However, 
> disabling `spark.sql.parquet.filterPushdown` produces consistent results:
> {code:python}
> spark.conf.set("spark.sql.parquet.filterPushdown", False)
> reread_parquet_pushdown_bug_df.filter("col0 = 0").show()
> reread_parquet_pushdown_bug_df.filter("col0 = 0").count()
> {code}
> This will print the same data frame, however it will print a count of 1. The 
> key to triggering this bug is not just enabling 
> `spark.sql.parquet.filterPushdown` (which is enabled by default). The case of 
> the column in the data frame (before writing) must differ from the case of 
> the partition column in the file path, i.e. COL0 versus col0 or col0 versus 
> COL0.



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to