tanyinyan created SPARK-6348: -------------------------------- Summary: Enable useFeatureScaling in SVMWithSGD Key: SPARK-6348 URL: https://issues.apache.org/jira/browse/SPARK-6348 Project: Spark Issue Type: Improvement Components: MLlib Affects Versions: 1.2.1 Reporter: tanyinyan Priority: Minor
Currently,useFeatureScaling are set to false by default in class GeneralizedLinearAlgorithm, and it is only enabled in LogisticRegressionWithLBFGS. SVMWithSGD class is a private class,train methods are provide in SVMWithSGD object. So there is no way to set useFeatureScaling when using SVM. I am using SVM on dataset(https://www.kaggle.com/c/avazu-ctr-prediction/data), train on the first day's dataset(ignore field id/device_id/device_ip, all remaining fields are concidered as categorical variable, and sparsed before SVM) and predict on the same data with threshold cleared, the predict result are all negative. Then i set useFeatureScaling to true, the predict result are normal(including negative and positive result) -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org