[ https://issues.apache.org/jira/browse/SPARK-40063?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Marcelo Rossini Castro updated SPARK-40063: ------------------------------------------- Description: When using the apply function to apply a function to a DataFrame column, it ends up mixing the column's rows ordering. A command like this: {code:java} df['row_to_apply_function'] = df.apply(lambda row: func(row['row_to_apply_function']), axis=1){code} > pyspark.pandas .apply() chaging rows ordering > --------------------------------------------- > > Key: SPARK-40063 > URL: https://issues.apache.org/jira/browse/SPARK-40063 > Project: Spark > Issue Type: Bug > Components: Pandas API on Spark > Affects Versions: 3.3.0 > Reporter: Marcelo Rossini Castro > Priority: Minor > > When using the apply function to apply a function to a DataFrame column, it > ends up mixing the column's rows ordering. > > A command like this: > {code:java} > df['row_to_apply_function'] = df.apply(lambda row: > func(row['row_to_apply_function']), axis=1){code} -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org