[ https://issues.apache.org/jira/browse/SPARK-40299?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Hyukjin Kwon resolved SPARK-40299. ---------------------------------- Resolution: Cannot Reproduce > java api calls the count() method to appear: java.lang.ArithmeticException: > BigInteger would overflow supported range > --------------------------------------------------------------------------------------------------------------------- > > Key: SPARK-40299 > URL: https://issues.apache.org/jira/browse/SPARK-40299 > Project: Spark > Issue Type: Bug > Components: Java API > Affects Versions: 2.3.2 > Reporter: code1v5 > Priority: Major > > ive Session ID = a372ea31-ac98-4e01-9de3-dfb623df87a4 > 22/09/01 13:50:32 WARN SessionState: METASTORE_FILTER_HOOK will be ignored, > since hive.security.authorization.manager is set to instance of > HiveAuthorizerFactory. > [Stage 0:> (0 + 8) / > 8]22/09/01 13:50:41 WARN TaskSetManager: Lost task 5.0 in stage 0.0 (TID 5, > hdp3-10-106, executor 6): java.lang.ArithmeticException: BigInteger would > overflow supported range > at java.math.BigInteger.reportOverflow(BigInteger.java:1084) > at java.math.BigInteger.pow(BigInteger.java:2391) > at java.math.BigDecimal.bigTenToThe(BigDecimal.java:3574) > at java.math.BigDecimal.bigMultiplyPowerTen(BigDecimal.java:3707) > at java.math.BigDecimal.setScale(BigDecimal.java:2448) > at java.math.BigDecimal.setScale(BigDecimal.java:2515) > at > org.apache.hadoop.hive.common.type.HiveDecimal.trim(HiveDecimal.java:241) > at > org.apache.hadoop.hive.common.type.HiveDecimal.normalize(HiveDecimal.java:252) > at > org.apache.hadoop.hive.common.type.HiveDecimal.create(HiveDecimal.java:83) > at > org.apache.hadoop.hive.serde2.lazy.LazyHiveDecimal.init(LazyHiveDecimal.java:79) > at > org.apache.hadoop.hive.serde2.lazy.LazyStruct.uncheckedGetField(LazyStruct.java:226) > at > org.apache.hadoop.hive.serde2.lazy.LazyStruct.getField(LazyStruct.java:202) > at > org.apache.hadoop.hive.serde2.lazy.objectinspector.LazySimpleStructObjectInspector.getStructFieldData(LazySimpleStructObjectInspector.java:128) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:439) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:434) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:410) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:410) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.agg_doAggregateWithoutKey_0$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) > at > org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) > at org.apache.spark.scheduler.Task.run(Task.scala:109) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > 22/09/01 13:50:42 ERROR TaskSetManager: Task 5 in stage 0.0 failed 4 times; > aborting job > 22/09/01 13:50:42 WARN TaskSetManager: Lost task 7.0 in stage 0.0 (TID 7, > hdp2-10-105, executor 8): TaskKilled (Stage cancelled) > [Stage 0:> (0 + 6) / > 8]org.apache.spark.SparkException: Job aborted due to stage failure: Task 5 > in stage 0.0 failed 4 times, most recent failure: Lost task 5.3 in stage 0.0 > (TID 10, hdp3-10-106, executor 6): java.lang.ArithmeticException: BigInteger > would overflow supported range > at java.math.BigInteger.reportOverflow(BigInteger.java:1084) > at java.math.BigInteger.pow(BigInteger.java:2391) > at java.math.BigDecimal.bigTenToThe(BigDecimal.java:3574) > at java.math.BigDecimal.bigMultiplyPowerTen(BigDecimal.java:3707) > at java.math.BigDecimal.setScale(BigDecimal.java:2448) > at java.math.BigDecimal.setScale(BigDecimal.java:2515) > at > org.apache.hadoop.hive.common.type.HiveDecimal.trim(HiveDecimal.java:241) > at > org.apache.hadoop.hive.common.type.HiveDecimal.normalize(HiveDecimal.java:252) > at > org.apache.hadoop.hive.common.type.HiveDecimal.create(HiveDecimal.java:83) > at > org.apache.hadoop.hive.serde2.lazy.LazyHiveDecimal.init(LazyHiveDecimal.java:79) > at > org.apache.hadoop.hive.serde2.lazy.LazyStruct.uncheckedGetField(LazyStruct.java:226) > at > org.apache.hadoop.hive.serde2.lazy.LazyStruct.getField(LazyStruct.java:202) > at > org.apache.hadoop.hive.serde2.lazy.objectinspector.LazySimpleStructObjectInspector.getStructFieldData(LazySimpleStructObjectInspector.java:128) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:439) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:434) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:410) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:410) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.agg_doAggregateWithoutKey_0$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) > at > org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) > at org.apache.spark.scheduler.Task.run(Task.scala:109) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1651) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1639) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1638) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1638) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831) > at scala.Option.foreach(Option.scala:257) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1872) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1821) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1810) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2039) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2060) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2079) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:2104) > at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:363) > at org.apache.spark.rdd.RDD.collect(RDD.scala:944) > at > org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:297) > at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2775) > at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2774) > at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3259) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77) > at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3258) > at org.apache.spark.sql.Dataset.count(Dataset.scala:2774) > ... 49 elided > Caused by: java.lang.ArithmeticException: BigInteger would overflow supported > range > at java.math.BigInteger.reportOverflow(BigInteger.java:1084) > at java.math.BigInteger.pow(BigInteger.java:2391) > at java.math.BigDecimal.bigTenToThe(BigDecimal.java:3574) > at java.math.BigDecimal.bigMultiplyPowerTen(BigDecimal.java:3707) > at java.math.BigDecimal.setScale(BigDecimal.java:2448) > at java.math.BigDecimal.setScale(BigDecimal.java:2515) > at org.apache.hadoop.hive.common.type.HiveDecimal.trim(HiveDecimal.java:241) > at > org.apache.hadoop.hive.common.type.HiveDecimal.normalize(HiveDecimal.java:252) > at > org.apache.hadoop.hive.common.type.HiveDecimal.create(HiveDecimal.java:83) > at > org.apache.hadoop.hive.serde2.lazy.LazyHiveDecimal.init(LazyHiveDecimal.java:79) > at > org.apache.hadoop.hive.serde2.lazy.LazyStruct.uncheckedGetField(LazyStruct.java:226) > at > org.apache.hadoop.hive.serde2.lazy.LazyStruct.getField(LazyStruct.java:202) > at > org.apache.hadoop.hive.serde2.lazy.objectinspector.LazySimpleStructObjectInspector.getStructFieldData(LazySimpleStructObjectInspector.java:128) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:439) > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:434) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:410) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:410) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.agg_doAggregateWithoutKey_0$(Unknown > Source) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown > Source) > at > org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) > at > org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614) > at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409) > at > org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) > at org.apache.spark.scheduler.Task.run(Task.scala:109) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org