[ https://issues.apache.org/jira/browse/SPARK-40303?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17603883#comment-17603883 ]
Yang Jie edited comment on SPARK-40303 at 9/14/22 5:24 AM: ----------------------------------------------------------- I did a simple experiment to compare the following scenarios: # A method with 127 input parameters # Encapsulate the input parameters of the above method as a specific type, including 127 fields, and create a new parameter object before each call # Encapsulate the input parameters of the above method as a specific type, including 127 fields, reuse one parameter object and reset + refill parameter data before each call I confirmed that the JIT compilation failure mentioned above will occur in the 1&2 test scenarios, the test result as follows: Java 8 {code:java} OpenJDK 64-Bit Server VM 1.8.0_345-b01 on Linux 5.15.0-1019-azure Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz Test sum: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------------------------------ Use multiple parameters method 35772 36161 550 0.3 3577.2 1.0X Use TestParameters create new 38701 38783 115 0.3 3870.1 0.9X Use TestParameters reuse 17986 18125 196 0.6 1798.6 2.0X {code} Java 11 {code:java} OpenJDK 64-Bit Server VM 11.0.16+8-LTS on Linux 5.15.0-1019-azure Intel(R) Xeon(R) Platinum 8370C CPU @ 2.80GHz Test sum: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------------------------------ Use multiple parameters method 12253 12286 46 0.8 1225.3 1.0X Use TestParameters create new 13644 13665 30 0.7 1364.4 0.9X Use TestParameters reuse 13188 13219 44 0.8 1318.8 0.9X {code} Java 17 {code:java} OpenJDK 64-Bit Server VM 17.0.4+8-LTS on Linux 5.15.0-1019-azure Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz Test sum: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------------------------------ Use multiple parameters method 14044 14128 119 0.7 1404.4 1.0X Use TestParameters create new 16174 16289 162 0.6 1617.4 0.9X Use TestParameters reuse 15633 15638 8 0.6 1563.3 0.9X {code} >From the test results, encapsulating and reusing specific parameter types will >only alleviate the problem when using Java 8, but running programs using Java >11 or Java 17 seems to be a simpler and more effective way. So for the current issue, I suggest upgrading the Java runtime environment to solve the problem. [~yumwang] Uploaded the test program to the attachment was (Author: luciferyang): I did a simple experiment to compare the following scenarios: # A method with 127 input parameters # Encapsulate the input parameters of the above method as a specific type, including 127 fields, and create a new parameter object before each call # Encapsulate the input parameters of the above method as a specific type, including 127 fields, reuse one parameter object and reset + refill parameter data before each call I confirmed that the JIT compilation failure mentioned above will occur in the 1&2 test scenarios, the test result as follows: Java 8 {code:java} OpenJDK 64-Bit Server VM 1.8.0_345-b01 on Linux 5.15.0-1019-azure Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz Test sum: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------------------------------ Use multiple parameters method 35772 36161 550 0.3 3577.2 1.0X Use TestParameters create new 38701 38783 115 0.3 3870.1 0.9X Use TestParameters reuse 17986 18125 196 0.6 1798.6 2.0X {code} Java 11 {code:java} OpenJDK 64-Bit Server VM 11.0.16+8-LTS on Linux 5.15.0-1019-azure Intel(R) Xeon(R) Platinum 8370C CPU @ 2.80GHz Test sum: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------------------------------ Use multiple parameters method 12253 12286 46 0.8 1225.3 1.0X Use TestParameters create new 13644 13665 30 0.7 1364.4 0.9X Use TestParameters reuse 13188 13219 44 0.8 1318.8 0.9X {code} Java 17 {code:java} OpenJDK 64-Bit Server VM 17.0.4+8-LTS on Linux 5.15.0-1019-azure Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz Test sum: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------------------------------ Use multiple parameters method 14044 14128 119 0.7 1404.4 1.0X Use TestParameters create new 16174 16289 162 0.6 1617.4 0.9X Use TestParameters reuse 15633 15638 8 0.6 1563.3 0.9X {code} >From the test results, encapsulating and reusing specific parameter types will >only alleviate the problem when using Java 8, but running programs using Java >11 or Java 17 seems to be a simpler and more effective way. So for the current issue, I suggest upgrading the Java runtime environment to solve the problem. Uploaded the test program to the attachment > The performance will be worse after codegen > ------------------------------------------- > > Key: SPARK-40303 > URL: https://issues.apache.org/jira/browse/SPARK-40303 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 3.4.0 > Reporter: Yuming Wang > Priority: Major > Attachments: TestApiBenchmark.scala, TestApis.java, > TestParameters.java > > > {code:scala} > import org.apache.spark.benchmark.Benchmark > val dir = "/tmp/spark/benchmark" > val N = 2000000 > val columns = Range(0, 100).map(i => s"id % $i AS id$i") > spark.range(N).selectExpr(columns: _*).write.mode("Overwrite").parquet(dir) > // Seq(1, 2, 5, 10, 15, 25, 40, 60, 100) > Seq(60).foreach{ cnt => > val selectExps = columns.take(cnt).map(_.split(" ").last).map(c => > s"count(distinct $c)") > val benchmark = new Benchmark("Benchmark count distinct", N, minNumIters = > 1) > benchmark.addCase(s"$cnt count distinct with codegen") { _ => > withSQLConf( > "spark.sql.codegen.wholeStage" -> "true", > "spark.sql.codegen.factoryMode" -> "FALLBACK") { > spark.read.parquet(dir).selectExpr(selectExps: > _*).write.format("noop").mode("Overwrite").save() > } > } > benchmark.addCase(s"$cnt count distinct without codegen") { _ => > withSQLConf( > "spark.sql.codegen.wholeStage" -> "false", > "spark.sql.codegen.factoryMode" -> "NO_CODEGEN") { > spark.read.parquet(dir).selectExpr(selectExps: > _*).write.format("noop").mode("Overwrite").save() > } > } > benchmark.run() > } > {code} > {noformat} > Java HotSpot(TM) 64-Bit Server VM 1.8.0_281-b09 on Mac OS X 10.15.7 > Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz > Benchmark count distinct: Best Time(ms) Avg Time(ms) > Stdev(ms) Rate(M/s) Per Row(ns) Relative > ------------------------------------------------------------------------------------------------------------------------ > 60 count distinct with codegen 628146 628146 > 0 0.0 314072.8 1.0X > 60 count distinct without codegen 147635 147635 > 0 0.0 73817.5 4.3X > {noformat} -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org