[ 
https://issues.apache.org/jira/browse/SPARK-40303?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17619978#comment-17619978
 ] 

Yuming Wang commented on SPARK-40303:
-------------------------------------

How to run benchmark code:
 
# Download latest spark: https://spark.apache.org/downloads.html
# start spark-shell
{code:sh}
tar -zxf spark-3.3.1-bin-hadoop3.tgz
cd spark-3.3.1-bin-hadoop3
bin/spark-shell --master "local[2]"
{code}
#  Run benchmark code:
{code:scala}
val dir = "/tmp/spark/benchmark"
val N = 2000000
val columns = Range(0, 100).map(i => s"id % $i AS id$i")

spark.range(N).selectExpr(columns: _*).write.mode("Overwrite").parquet(dir)

Seq(40, 60).foreach { cnt =>
  val selectExps = columns.take(cnt).map(_.split(" ").last).map(c => 
s"count(distinct $c)")
  val start = System.currentTimeMillis()
  spark.read.parquet(dir).selectExpr(selectExps: _*).collect()
  println(cnt + "|" + (System.currentTimeMillis() - start))
}
{code}
#  Output:
{noformat}
Before:
40|280273
60|581743
After backport JDK-8159720 to JDK 8:
40|20582
60|49688
{noformat}




> The performance will be worse after codegen
> -------------------------------------------
>
>                 Key: SPARK-40303
>                 URL: https://issues.apache.org/jira/browse/SPARK-40303
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 3.4.0
>            Reporter: Yuming Wang
>            Priority: Major
>         Attachments: TestApiBenchmark.scala, TestApis.java, 
> TestParameters.java
>
>
> {code:scala}
> import org.apache.spark.benchmark.Benchmark
> val dir = "/tmp/spark/benchmark"
> val N = 2000000
> val columns = Range(0, 100).map(i => s"id % $i AS id$i")
> spark.range(N).selectExpr(columns: _*).write.mode("Overwrite").parquet(dir)
> // Seq(1, 2, 5, 10, 15, 25, 40, 60, 100)
> Seq(60).foreach{ cnt =>
>   val selectExps = columns.take(cnt).map(_.split(" ").last).map(c => 
> s"count(distinct $c)")
>   val benchmark = new Benchmark("Benchmark count distinct", N, minNumIters = 
> 1)
>   benchmark.addCase(s"$cnt count distinct with codegen") { _ =>
>     withSQLConf(
>       "spark.sql.codegen.wholeStage" -> "true",
>       "spark.sql.codegen.factoryMode" -> "FALLBACK") {
>       spark.read.parquet(dir).selectExpr(selectExps: 
> _*).write.format("noop").mode("Overwrite").save()
>     }
>   }
>   benchmark.addCase(s"$cnt count distinct without codegen") { _ =>
>     withSQLConf(
>       "spark.sql.codegen.wholeStage" -> "false",
>       "spark.sql.codegen.factoryMode" -> "NO_CODEGEN") {
>       spark.read.parquet(dir).selectExpr(selectExps: 
> _*).write.format("noop").mode("Overwrite").save()
>     }
>   }
>   benchmark.run()
> }
> {code}
> {noformat}
> Java HotSpot(TM) 64-Bit Server VM 1.8.0_281-b09 on Mac OS X 10.15.7
> Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz
> Benchmark count distinct:                 Best Time(ms)   Avg Time(ms)   
> Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
> ------------------------------------------------------------------------------------------------------------------------
> 60 count distinct with codegen                   628146         628146        
>    0          0.0      314072.8       1.0X
> 60 count distinct without codegen                147635         147635        
>    0          0.0       73817.5       4.3X
> {noformat}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to