[ https://issues.apache.org/jira/browse/SPARK-37697?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Douglas Moore updated SPARK-37697: ---------------------------------- Attachment: image-2022-10-31-22-49-37-356.png > Make it easier to convert numpy arrays to Spark Dataframes > ---------------------------------------------------------- > > Key: SPARK-37697 > URL: https://issues.apache.org/jira/browse/SPARK-37697 > Project: Spark > Issue Type: Improvement > Components: PySpark > Affects Versions: 3.1.2 > Reporter: Douglas Moore > Priority: Major > Attachments: image-2022-10-31-22-49-37-356.png > > > Make it easier to convert numpy arrays to dataframes. > Often we receive errors: > > {code:java} > df = spark.createDataFrame(numpy.arange(10)) > Can not infer schema for type: <class 'numpy.int64'> > {code} > > OR > {code:java} > df = spark.createDataFrame(numpy.arange(10.)) > Can not infer schema for type: <class 'numpy.float64'> > {code} > > Today (Spark 3.x) we have to: > {code:java} > spark.createDataFrame(pd.DataFrame(numpy.arange(10.))) {code} > Make this easier with a direct conversion from Numpy arrays to Spark > Dataframes. -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org