[ 
https://issues.apache.org/jira/browse/SPARK-39865?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17634465#comment-17634465
 ] 

Catalin Toda edited comment on SPARK-39865 at 11/15/22 6:02 PM:
----------------------------------------------------------------

[~Gengliang.Wang] here are the SQL statements that fail in my environment

{code:java}
DROP TABLE IF EXISTS test_table;

CREATE TABLE test_table (
    tmp decimal(38,9)
)
STORED AS PARQUET;

INSERT INTO TABLE test_table SELECT 1.2 test;

DROP TABLE IF EXISTS comp;
CREATE TABLE IF NOT EXISTS comp (
  column1 decimal(38,9),
  column2 decimal(38,9)
  )
STORED AS PARQUET;

WITH
test as (
    select
        sum(tmp) as tmp
    from test_table
)
INSERT OVERWRITE TABLE comp
select 
      case when tmp = 0 then null
        else 1.0/tmp end as column1,
      if(tmp = 0,0, 1.0/tmp) as column2
    from test

{code}



was (Author: catalinii):
[~Gengliang.Wang] here is the SQL statements that fail in my environment

{code:java}
DROP TABLE IF EXISTS test_table;

CREATE TABLE test_table (
    tmp decimal(38,9)
)
STORED AS PARQUET;

INSERT INTO TABLE test_table SELECT 1.2 test;

DROP TABLE IF EXISTS comp;
CREATE TABLE IF NOT EXISTS comp (
  column1 decimal(38,9),
  column2 decimal(38,9)
  )
STORED AS PARQUET;

WITH
test as (
    select
        sum(tmp) as tmp
    from test_table
)
INSERT OVERWRITE TABLE comp
select 
      case when tmp = 0 then null
        else 1.0/tmp end as column1,
      if(tmp = 0,0, 1.0/tmp) as column2
    from test

{code}


> Show proper error messages on the overflow errors of table insert
> -----------------------------------------------------------------
>
>                 Key: SPARK-39865
>                 URL: https://issues.apache.org/jira/browse/SPARK-39865
>             Project: Spark
>          Issue Type: Sub-task
>          Components: SQL
>    Affects Versions: 3.3.0, 3.4.0
>            Reporter: Gengliang Wang
>            Assignee: Gengliang Wang
>            Priority: Major
>             Fix For: 3.3.1
>
>
> In Spark 3.3, the error message of ANSI CAST is improved. However, the table 
> insertion is using the same CAST expression:
> {code:java}
> > create table tiny(i tinyint);
> > insert into tiny values (1000);
> org.apache.spark.SparkArithmeticException[CAST_OVERFLOW]: The value 1000 of 
> the type "INT" cannot be cast to "TINYINT" due to an overflow. Use `try_cast` 
> to tolerate overflow and return NULL instead. If necessary set 
> "spark.sql.ansi.enabled" to "false" to bypass this error.
> {code}
>  
> Showing the hint of `If necessary set "spark.sql.ansi.enabled" to "false" to 
> bypass this error` doesn't help at all. This PR is to fix the error message. 
> After changes, the error message of this example will become:
> {code:java}
> org.apache.spark.SparkArithmeticException: [CAST_OVERFLOW_IN_TABLE_INSERT] 
> Fail to insert a value of "INT" type into the "TINYINT" type column `i` due 
> to an overflow. Use `try_cast` on the input value to tolerate overflow and 
> return NULL instead.{code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to