[ 
https://issues.apache.org/jira/browse/SPARK-42346?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17685466#comment-17685466
 ] 

Ritika Maheshwari commented on SPARK-42346:
-------------------------------------------

Hello added three rows to input_table. Still no error. I do have DPP enabled.

*********************************************************************

Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM, Java 12.0.2)

Type in expressions to have them evaluated.

Type :help for more information.

 

scala> val df = Seq(("a","b"),("c","d"),("e","f")).toDF("surname","first_name")

*df*: *org.apache.spark.sql.DataFrame* = [surname: string, first_name: string]

 

scala> df.createOrReplaceTempView("input_table")

 

scala> spark.sql("select(Select Count(Distinct first_name) from input_table) As 
distinct_value_count from input_table Union all select (select count(Distinct 
surname) from input_table) as distinct_value_count from input_table").show()

+--------------------+                                                          

|distinct_value_count|

+--------------------+

|                   3|

|                   3|

|                   3|

|                   3|

|                   3|

|                   3|

+--------------------+

 

**************************************************************

AdaptiveSparkPlan isFinalPlan=false
+- Union
   :- Project [cast(Subquery subquery#145, [id=#571] as string) AS 
distinct_value_count#161]
   :  :  +- Subquery subquery#145, [id=#571]
   :  :     +- AdaptiveSparkPlan isFinalPlan=false
   :  :        +- HashAggregate(keys=[], functions=[count(distinct 
first_name#8)], output=[count(DISTINCT first_name)#152L])
   :  :           +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#569]
   :  :              +- HashAggregate(keys=[], 
functions=[partial_count(distinct first_name#8)], output=[count#167L])
   :  :                 +- HashAggregate(keys=[first_name#8], functions=[], 
output=[first_name#8])
   :  :                    +- Exchange hashpartitioning(first_name#8, 200), 
ENSURE_REQUIREMENTS, [id=#565]
   :  :                       +- HashAggregate(keys=[first_name#8], 
functions=[], output=[first_name#8])
   :  :                          +- LocalTableScan [first_name#8]
   :  +- LocalTableScan [_1#2, _2#3]
   +- Project [cast(Subquery subquery#147, [id=#590] as string) AS 
distinct_value_count#163]
      :  +- Subquery subquery#147, [id=#590]
      :     +- AdaptiveSparkPlan isFinalPlan=false
      :        +- HashAggregate(keys=[], functions=[count(distinct surname#7)], 
output=[count(DISTINCT surname)#154L])
      :           +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#588]
      :              +- HashAggregate(keys=[], 
functions=[partial_count(distinct surname#7)], output=[count#170L])
      :                 +- HashAggregate(keys=[surname#7], functions=[], 
output=[surname#7])
      :                    +- Exchange hashpartitioning(surname#7, 200), 
ENSURE_REQUIREMENTS, [id=#584]
      :                       +- HashAggregate(keys=[surname#7], functions=[], 
output=[surname#7])
      :                          +- LocalTableScan [surname#7]
      +- LocalTableScan [_1#149, _2#150]

> distinct(count colname) with UNION ALL causes query analyzer bug
> ----------------------------------------------------------------
>
>                 Key: SPARK-42346
>                 URL: https://issues.apache.org/jira/browse/SPARK-42346
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 3.3.0, 3.4.0, 3.5.0
>            Reporter: Robin
>            Assignee: Peter Toth
>            Priority: Major
>             Fix For: 3.3.2, 3.4.0, 3.5.0
>
>
> If you combine a UNION ALL with a count(distinct colname) you get a query 
> analyzer bug.
>  
> This behaviour is introduced in 3.3.0.  The bug was not present in 3.2.1.
>  
> Here is a reprex in PySpark:
> {{df_pd = pd.DataFrame([}}
> {{    \{'surname': 'a', 'first_name': 'b'}}}
> {{])}}
> {{df_spark = spark.createDataFrame(df_pd)}}
> {{df_spark.createOrReplaceTempView("input_table")}}
> {{sql = """}}
> {{SELECT }}
> {{    (SELECT Count(DISTINCT first_name) FROM   input_table) }}
> {{        AS distinct_value_count}}
> {{FROM   input_table}}
> {{UNION ALL}}
> {{SELECT }}
> {{    (SELECT Count(DISTINCT surname) FROM   input_table) }}
> {{        AS distinct_value_count}}
> {{FROM   input_table """}}
> {{spark.sql(sql).toPandas()}}
>  



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to