[ https://issues.apache.org/jira/browse/SPARK-42444 ]


    Sean R. Owen deleted comment on SPARK-42444:
    --------------------------------------

was (Author: JIRAUSER295111):
Thank you for sharing.  [Azure Solution Architect Training 
|https://www.igmguru.com/cloud-computing/microsoft-azure-solution-architect-az-300-training/]has
 been designed for software developers who are keen on developing best-in-class 
applications using this open and advanced platform of Windows Azure.

 

> DataFrame.drop should handle multi columns properly
> ---------------------------------------------------
>
>                 Key: SPARK-42444
>                 URL: https://issues.apache.org/jira/browse/SPARK-42444
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark
>    Affects Versions: 3.4.0
>            Reporter: Ruifeng Zheng
>            Priority: Blocker
>
> {code:java}
> from pyspark.sql import Row
> df1 = spark.createDataFrame([(14, "Tom"), (23, "Alice"), (16, "Bob")], 
> ["age", "name"])
> df2 = spark.createDataFrame([Row(height=80, name="Tom"), Row(height=85, 
> name="Bob")])
> df1.join(df2, df1.name == df2.name, 'inner').drop('name', 'age').show()
> {code}
> This works in 3.3
> {code:java}
> +------+
> |height|
> +------+
> |    85|
> |    80|
> +------+
> {code}
> but fails in 3.4
> {code:java}
> ---------------------------------------------------------------------------
> AnalysisException                         Traceback (most recent call last)
> Cell In[1], line 4
>       2 df1 = spark.createDataFrame([(14, "Tom"), (23, "Alice"), (16, 
> "Bob")], ["age", "name"])
>       3 df2 = spark.createDataFrame([Row(height=80, name="Tom"), 
> Row(height=85, name="Bob")])
> ----> 4 df1.join(df2, df1.name == df2.name, 'inner').drop('name', 
> 'age').show()
> File ~/Dev/spark/python/pyspark/sql/dataframe.py:4913, in 
> DataFrame.drop(self, *cols)
>    4911     jcols = [_to_java_column(c) for c in cols]
>    4912     first_column, *remaining_columns = jcols
> -> 4913     jdf = self._jdf.drop(first_column, self._jseq(remaining_columns))
>    4915 return DataFrame(jdf, self.sparkSession)
> File ~/Dev/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py:1322, 
> in JavaMember.__call__(self, *args)
>    1316 command = proto.CALL_COMMAND_NAME +\
>    1317     self.command_header +\
>    1318     args_command +\
>    1319     proto.END_COMMAND_PART
>    1321 answer = self.gateway_client.send_command(command)
> -> 1322 return_value = get_return_value(
>    1323     answer, self.gateway_client, self.target_id, self.name)
>    1325 for temp_arg in temp_args:
>    1326     if hasattr(temp_arg, "_detach"):
> File ~/Dev/spark/python/pyspark/errors/exceptions/captured.py:159, in 
> capture_sql_exception.<locals>.deco(*a, **kw)
>     155 converted = convert_exception(e.java_exception)
>     156 if not isinstance(converted, UnknownException):
>     157     # Hide where the exception came from that shows a non-Pythonic
>     158     # JVM exception message.
> --> 159     raise converted from None
>     160 else:
>     161     raise
> AnalysisException: [AMBIGUOUS_REFERENCE] Reference `name` is ambiguous, could 
> be: [`name`, `name`].
> {code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to