charlotte van der scheun created SPARK-44079: ------------------------------------------------
Summary: Json reader crashes when a different schema is present Key: SPARK-44079 URL: https://issues.apache.org/jira/browse/SPARK-44079 Project: Spark Issue Type: Bug Components: python Affects Versions: 3.4.0 Reporter: charlotte van der scheun {*}Code{*}: {code:java} from pyspark.sql.types import StructType, StructField, IntegerType, StringType import json data = """[{"a": "incorrect", "b": "correct"}]""" schema = StructType([StructField('a', IntegerType(), True), StructField('b', StringType(), True), StructField('_corrupt_record', StringType(), True)]) spark.read.option("mode", "PERMISSIVE").option("multiline","true").schema(schema).json(spark.sparkContext.parallelize([data])).show(truncate=False){code} *Used packages:* * Pyspark==3.4.0 * python==3.10.0 * delta-spark==2.4.0 spark_jars=( "org.apache.spark:spark-avro_2.12:3.4.0" ",io.delta:delta-core_2.12:2.4.0" ",com.databricks:spark-xml_2.12:0.16.0" ) {*}Expected behaviour{*}: |a|b|_corrupt_record| |null|null|[\{"a": "incorrect", "b": "correct"}]| {*}Actual behaviour{*}: {code:java} *** py4j.protocol.Py4JJavaError: An error occurred while calling o104.showString. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 4 in stage 2.0 failed 1 times, most recent failure: Lost task 4.0 in stage 2.0 (TID 9) (charlottesmbp2.home executor driver): java.lang.ArrayIndexOutOfBoundsException: Index 1 out of bounds for length 1 at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.genericGet(rows.scala:201) at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getAs(rows.scala:35) at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.get(rows.scala:37) at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.get$(rows.scala:37) at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.get(rows.scala:195) at org.apache.spark.sql.catalyst.util.FailureSafeParser.$anonfun$toResultRow$2(FailureSafeParser.scala:47) at scala.Option.map(Option.scala:230) at org.apache.spark.sql.catalyst.util.FailureSafeParser.$anonfun$toResultRow$1(FailureSafeParser.scala:47) at org.apache.spark.sql.catalyst.util.FailureSafeParser.parse(FailureSafeParser.scala:64) at org.apache.spark.sql.DataFrameReader.$anonfun$json$10(DataFrameReader.scala:431) at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:760) at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:888) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:888) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364) at org.apache.spark.rdd.RDD.iterator(RDD.scala:328) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) at org.apache.spark.scheduler.Task.run(Task.scala:139) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144) at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642) at java.base/java.lang.Thread.run(Thread.java:1589) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2785) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2721) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2720) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2720) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1206) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1206) at scala.Option.foreach(Option.scala:407) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1206) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2984) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2923) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2912) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:971) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2263) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2284) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2303) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:530) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:483) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:61) at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:4177) at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:3161) at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4167) at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:526) at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4165) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:118) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:195) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:103) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4165) at org.apache.spark.sql.Dataset.head(Dataset.scala:3161) at org.apache.spark.sql.Dataset.take(Dataset.scala:3382) at org.apache.spark.sql.Dataset.getRows(Dataset.scala:284) at org.apache.spark.sql.Dataset.showString(Dataset.scala:323) at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:76) at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:52) at java.base/java.lang.reflect.Method.invoke(Method.java:578) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) at py4j.ClientServerConnection.run(ClientServerConnection.java:106) at java.base/java.lang.Thread.run(Thread.java:1589) Caused by: java.lang.ArrayIndexOutOfBoundsException: Index 1 out of bounds for length 1 at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.genericGet(rows.scala:201) at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getAs(rows.scala:35) at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.get(rows.scala:37) at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.get$(rows.scala:37) at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.get(rows.scala:195) at org.apache.spark.sql.catalyst.util.FailureSafeParser.$anonfun$toResultRow$2(FailureSafeParser.scala:47) at scala.Option.map(Option.scala:230) at org.apache.spark.sql.catalyst.util.FailureSafeParser.$anonfun$toResultRow$1(FailureSafeParser.scala:47) at org.apache.spark.sql.catalyst.util.FailureSafeParser.parse(FailureSafeParser.scala:64) at org.apache.spark.sql.DataFrameReader.$anonfun$json$10(DataFrameReader.scala:431) at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:760) at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:888) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:888) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364) at org.apache.spark.rdd.RDD.iterator(RDD.scala:328) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) at org.apache.spark.scheduler.Task.run(Task.scala:139) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144) at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642) ... 1 more {code} -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org